BEST MANAGEMENT PRACTICES SITE DESIGN FOR STORMWATER MANAGEMENT

Photo Source: PWL Partnership Landscape Architects Inc.

PART 1: PURPOSE AND DEFINITION

Fundamental hydrological concepts and stormwater management concepts can be applied at the site design phase that are:

- more integrated with natural topography,
- reinforce the hydrologic cycle,
- · more aesthetically pleasing, and
- often less expensive to build.

A few site planning principles help to locate development on the least sensitive portions of a site and accommodate land development and use while mitigating its impact on stormwater quality.

PART 2: DESIGN GUIDELINES

Define Development Envelope and Protected

Areas - The first step in site planning is to define the development envelope. This is done by identifying protected areas, setbacks, easements and other site features, and by consulting applicable standards and requirements. Site features to be protected may include important existing trees, steep slopes, erosive soils, riparian areas, or wetlands.

By keeping the development envelope compact, environmental impacts can be minimized, construction costs can be reduced, and many of the site's most attractive landscape features can be retained. In some cases, economics or other factors may not allow avoidance of all sensitive areas. In these cases, care can be taken to mitigate the impacts of development through site work and other landscape treatments

• Minimize Directly Connected Impervious Areas -Impervious areas directly connected to the storm drain system are the greatest contributors to urban nonpoint source pollution. Any impervious surface that drains into a catch basin or other conveyance structure is a "directly connected impervious surface." As stormwater runoff flows across parking lots, roadways, and other paved areas, the oil, sediment, metals, and other pollutants are collected and concentrated. If this runoff is collected by a drainage structure and carried directly along impervious gutters or in sealed underground pipes, it has no opportunity for filtering by plant material or infiltration into the soil. It also increases in velocity and amount, causing increased peak-flows in the winter and decreased base-flows in the summer. A basic site design principle for stormwater management is to minimize these directly connected impervious areas. This can be done by limiting overall impervious land coverage or by infiltrating and/or dispersing runoff from these impervious areas.

• **Maximize Permeability** - Within the development envelope, many opportunities are available to maximize the permeability of new construction. These include minimizing impervious areas, paving with permeable materials, clustering buildings, and reducing the land coverage of structures by smaller footprints. All of these strategies make more land available for infiltration and dispersion through natural vegetation.

Once site coverage is minimized through clustering and careful planning, pavement surfaces can be selected for permeability. A paved area of brick-onsand, for example, is more permeable than a large concrete slab. Engineered soil/landscape systems are permeable ground covers suitable for a wide variety of uses. Permeable/porous pavements can be used in place of traditional concrete or asphalt pavements in many applications.

Maximizing permeability at every possible opportunity requires the integration of many small strategies. These strategies will be reflected at all levels of a project, from site planning to materials selection. In addition to the environmental and aesthetic benefits, a high-permeability site plan may allow the reduction or elimination of expensive runoff underground conveyance systems, flow control and treatment facilities, yielding significant savings in development costs.

• Maximize Choices for Mobility - Given the costs of automobile use, both in land area consumed and pollutants generated, maximizing choices for mobility is a basic principle for environmentally responsible site design. By designing to promote alternatives to automobile use, a primary source of stormwater pollution can be mitigated.

Bicycle lanes and paths, secure bicycle parking at community centers and shops, direct, safe pedestrian connections, and transit facilities are all site-planning elements that maximize choices for mobility. • Use Drainage as a Design Element - Unlike conveyance storm drain systems that hide water beneath the surface and work independently of surface topography, a drainage system for stormwater infiltration or dispersion can work with natural land forms and land uses to become a major design element of a site plan.

By applying stormwater management techniques early in the site plan development, the drainage system can suggest pathway alignments and optimum locations for various park elements. In this way, the drainage system helps to generate the form of the site design, giving the development an integral, more aesthetically pleasing relationship to the natural features of the site. Not only does the integrated site plan complement the land, it can also save on development costs by minimizing earthwork and expensive drainage features.

END OF BMP