

File No. 04-1000-20-2016-330

September 28, 2016

s.22(1)

Dear s.22(1)

Re: Request for Access to Records under the Freedom of Information and Protection of Privacy Act (the "Act")

I am responding to your request of September 8, 2016 for:

A copy of the soil sampling report for 3010 Southeast Kent Avenue.

All responsive records are attached.

Under section 52 of the Act you may ask the Information & Privacy Commissioner to review any matter related to the City's response to your request. The Act allows you 30 business days from the date you receive this notice to request a review by writing to: Office of the Information & Privacy Commissioner, <u>info@oipc.bc.ca</u> or by phoning 250-387-5629.

If you request a review, please provide the Commissioner's office with: 1) the request number assigned to your request (#04-1000-20-2016-330); 2) a copy of this letter; 3) a copy of your original request for information sent to the City of Vancouver; and 4) detailed reasons or grounds on which you are seeking the review.

Please do not hesitate to contact the Freedom of Information Office at <u>foi@vancouver.ca</u> if you have any questions.

Yours truly,

Barbara J. Van Fraassen, BA Director, Access to Information *City Clerk's Department, City of Vancouver*

Encl.

:kt

January 8, 2016

City of Vancouver 320 – 507 W Broadway Vancouver, BC V5Z 0B4 ISSUED FOR REVIEW FILE: 704-ENV.VENV03059-01 Via Email: Amber.Bongiovanni@vancouver.ca

Attention: Ms. Amber Bongiovanni, B.Sc., GradTech, EP Project Manager

Subject: Preliminary Desktop Geotechnical Report for 3010 E Kent Ave South Vancouver, B.C.

This 'Issued for Review' document is provided solely for the purpose of client review and presents our interim findings and recommendations to date. Our usable findings and recommendations are provided only through an 'Issued for Use' document, which will be issued subsequent to this review. Final design should not be undertaken based on the interim recommendations made herein. Once our report is issued for use, the 'Issued for Review' document should be either returned to Tetra Tech EBA or destroyed.

1.0 INTRODUCTION AND PROJECT DESCRIPTION

Tetra Tech EBA Inc. (Tetra Tech EBA) has been retained by the City of Vancouver (CoV) to provide a preliminary desktop geotechnical report for the potential development of 3010 E Kent Ave South in Vancouver BC. The purpose of this report is to summarize our review of available existing soil and groundwater information in the vicinity of the site and to provide preliminary, overview comments on the feasibility of developing the site from a geotechnical perspective.

The proposed project site is bordered by E Kent Ave South to the north, an existing three-storey residential complex to the east, the Fraser River to the south, and a vacant lot to the west.

We understand that the CoV is considering developing the project site by constructing a single-storey, wood-framed, at-grade daycare building. According to the CoV, we understand that the building will have approximate dimensions of 30 m by 30 m. We expect that the finished floor slab elevation of the proposed building will be at or near existing site grades; however, the CoV should review the flood plain elevation and confirm if the site and/or building grades need to be raised to achieve the minimum flood construction level for development. Hydrotechnical considerations in the development of the site, including flooding and scour protection are outside the scope of this report.

We expect that the proposed development will be designed in accordance with the requirements of Part 4 of the 2014 Vancouver Building Bylaw (VBBL).

2.0 REFERENCE DOCUMENTS

The following documentation was reviewed in the preparation of this report:

 Geological Survey of Canada. 1980. Surficial Geology, Vancouver, British Columbia. Map 1486A, 1:50,000 Scale.

- Geotechnical Investigation Report: Proposed Affordable Housing Site 4/5, 2801 East Kent Avenue North, Vancouver, B.C., prepared by GeoPacific Consultants Ltd., dated September 19, 2014.
- Geotechnical Investigation Report: Proposed Affordable Housing Site 6, 2910 East Kent Avenue South, Vancouver, B.C., prepared by GeoPacific Consultants Ltd., dated September 25, 2014.
- Historic aerial photographs of the site (period 1938 to 2004), obtained from the UBC Department of Geography Air Photo Library.

3.0 ANTICIPATED SUBSURFACE CONDITIONS

3.1 Soil Stratigraphy

Based on our review of Geological Survey of Canada Map 1486A, available geotechnical reports, and our previous project experience in the area the soil conditions at the project site are anticipated to consist of Fraser River Sediments comprised of silt clay loam overlying interbedded fine to medium sand and minor silt beds. These soils are underlain by dense glacial sediments (Vashon Drift), comprised of lodgement and minor flow till with lenses and interbeds of substratified glaciofluvial sand to gravel.

The existing geotechnical reports indicate that the adjacent vacant property to the west is mantled by up to 2.3 m of fill material, underlain by topsoil and organic silt in some locations. These materials are underlain by approximately 2 m to 4 m of firm to stiff silt and then up to 7 m of loose to compact sand with interbeds of clayey silt to silty sand. Dense glacial till was encountered at the adjacent vacant property at depths ranging from 6.4 m at the northwest portion of the site to 12.8 m at the southeast portion of the site.

3.2 Groundwater

Groundwater was encountered on the adjacent vacant property to the west at a depth of approximately 2 m below the current site grades. Groundwater levels are anticipated to vary seasonally and are likely influenced by the Fraser River.

4.0 SITE DEVELOPMENT HISTORY

Based on our review of the historic aerial photographs, the site was occupied by several industrial developments between the 1940s and the 1980s.

In addition to the previous development, portions of the Fraser River shoreline have been infilled and the shoreline modified. The oldest aerial photographs from 1938 show that the southern portion of the property contained a small island within the Fraser River, separated from the shore by an approximately 20 m wide back channel. The back channel was largely infilled by the 1950s, followed by further infilling and extending of the shoreline towards the south during the 1960s. The shoreline was further modified and reshaped during the 1990s as part of the development of Riverfront Park. Based on the above, we expect that the southern 30 m to 60 m of the site is largely comprised of fill material.

5.0 KEY GEOTECHNICAL CONSIDERATIONS

Based on our understanding of the subsurface conditions and the development history of the site, the following key geotechnical issues should be addressed as part of the proposed building development of the site:

- Variable Fill: The site is likely underlain by fills of variable thickness and composition that may include abandoned building foundations, timber pilings, pavement, construction debris, etc. These fill materials are unlikely to be suitable to support the proposed building and may need to be removed. Large obstructions such as concrete rubble, logs and boulders, if present in the fill, could impede the construction of deep foundations or ground improvement works.
- Settlement: Review of the available documentation indicates that the site may be underlain by settlement sensitive fine-grained silt, sandy silt, and/or organic silt. The additional loads resulting from raising site grades and construction of the proposed building development are expected to result in post-construction settlement of these fine-grained soils. The magnitude of the post-construction settlement will depend on the thickness and compressibility of the soil, the location and loads imparted from previous developments, and the magnitude of the additional loading applied.

In the event that the anticipated post-construction settlement is significant, ground improvement in the form of preloading may be required to reduce the total and differential post-construction settlements. Although previous developments on the site included several buildings and stockpiles which would have provided some preloading effect, the previous developments ranged in size, load, and duration. As such, the preload effect of the previous developments is not consistent across the site, which could result in differential settlement across the proposed building unless additional preloading is undertaken.

Liquefaction: The subsurface soils may contain layers of loose to compact silty sand and sand, which are expected to be susceptible to liquefaction under the influence of the 2014 VBBL design earthquake. In addition, the firm to stiff silt layers may also be susceptible to strain softening under the influence of the design earthquake. Liquefaction and strain softening will result in strength reduction of these soils. The foundation of the proposed building will have to be designed such that punching failure of the foundation will not occur as a result of the reduced soil strength.

Liquefaction of the silty sand and sand layers are expected to result in vertical and horizontal ground displacements which will affect the proposed building. The magnitude of the movements at the proposed building will depend on the thickness of the liquefiable layers and the location of the building on the property. Generally speaking, the magnitude of these movements is expected to increase to the south (i.e. towards the Fraser River shoreline). In the event that the anticipated liquefaction induced ground movements are significant, ground improvement in the form of soil densification with stone columns, vibro-replacement/vibro-floatation, or rapid-impact-compaction may be required. The extent of the ground improvement, if necessary, will depend on the thickness of the liquefiable layers present. Alternatively, the proposed building foundation may be structurally designed to accommodate the movements and allow for egress as required by the 2014 VBBL.

• Shallow Groundwater: Difficulties during construction could arise due to the shallow depth to groundwater, which could include significant water inflow and/or sloughing into utility trench and drainage excavations below the water table.

6.0 DISCUSSION AND RECOMMENDATIONS

As outlined above, several geotechnical considerations need to be evaluated for the proposed development. From a geotechnical perspective, the proposed building development is considered feasible, provided that the geotechnical considerations are incorporated into the design and construction of the building.

6.1 Building Location

At this preliminary stage, we expect that the most appropriate location for the proposed building from a geotechnical perspective will be along the northernmost perimeter of the site, where the dense glacial soils are likely closest to the ground surface. Site preparation will likely require the removal of fill material and replacement with compacted structural fill (free-draining sand or sand and gravel). Preloading of the building area to reduce post-construction settlements may also be required. We further expect that the proposed building could likely be founded on a shallow modified raft slab to tolerate post-liquefaction ground movements.

6.2 Geotechnical Site Exploration

A geotechnical site exploration comprised of auger-drilled test holes and seismic cone penetration tests should be undertaken to verify the subsurface conditions at the site and to provide sufficient information for design of the building foundations. In addition, a series of excavator-dug test pits and/or shallower machine-augered test holes should be completed to evaluate the thickness and quality of the fill material across the site. We note that due to the potential for obstructions, excavator-dug test pits may be the most practical initial exploration method.

7.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the City of Vancouver and their appointed agents. Tetra Tech EBA Inc. (Tetra Tech EBA) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the City of Vancouver, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Tetra Tech EBA's General Conditions are provided in Appendix A of this report.

8.0 CLOSURE

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech EBA Inc.

ISSUED FOR REVIEW

Prepared by: Conrad Tench, P.Eng. Senior Geotechnical Engineer Direct Line: 778.945.5787 Conrad.Tench@tetratech.com

CTD/JP/db

ISSUED FOR REVIEW

Prepared by: Jason Pellett, P.Eng./P.Geo. Senior Geotechnical Engineer Direct Line: 778.945.5841 Jason.Pellett@tetratech.com

APPENDIX A TETRA TECH EBA'S GENERAL CONDITIONS

GEOTECHNICAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This geotechnical report pertains to a specific site, a specific development and a specific scope of work. It is not applicable to any other sites nor should it be relied upon for types of development other than that to which it refers. Any variation from the site or development would necessitate a supplementary geotechnical assessment.

This report and the recommendations contained in it are intended for the sole use of Tetra Tech EBA's Client. Tetra Tech EBA does not accept any responsibility for the accuracy of any of the data, the analyses or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than Tetra Tech EBA's Client unless otherwise authorized in writing by Tetra Tech EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of Tetra Tech EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where Tetra Tech EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed Tetra Tech EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Tetra Tech EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of Tetra Tech EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Tetra Tech EBA. Tetra Tech EBA's instruments of professional service will be used only and exactly as submitted by Tetra Tech EBA.

Electronic files submitted by Tetra Tech EBA have been prepared and submitted using specific software and hardware systems. Tetra Tech EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, Tetra Tech EBA has not been retained to investigate, address or consider and has not investigated, addressed or considered any environmental or regulatory issues associated with development on the subject site.

4.0 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgmental in nature as to both type and condition. Tetra Tech EBA does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

5.0 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

6.0 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. Tetra Tech EBA does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.

7.0 PROTECTION OF EXPOSED GROUND

Excavation and construction operations expose geological materials to climatic elements (freeze/thaw, wet/dry) and/or mechanical disturbance which can cause severe deterioration. Unless otherwise specifically indicated in this report, the walls and floors of excavations must be protected from the elements, particularly moisture, desiccation, frost action and construction traffic.

8.0 SUPPORT OF ADJACENT GROUND AND STRUCTURES

Unless otherwise specifically advised, support of ground and structures adjacent to the anticipated construction and preservation of adjacent ground and structures from the adverse impact of construction activity is required.

9.0 INFLUENCE OF CONSTRUCTION ACTIVITY

There is a direct correlation between construction activity and structural performance of adjacent buildings and other installations. The influence of all anticipated construction activities should be considered by the contractor, owner, architect and prime engineer in consultation with a geotechnical engineer when the final design and construction techniques are known.

10.0 OBSERVATIONS DURING CONSTRUCTION

Because of the nature of geological deposits, the judgmental nature of geotechnical engineering, as well as the potential of adverse circumstances arising from construction activity, observations during site preparation, excavation and construction should be carried out by a geotechnical engineer. These observations may then serve as the basis for confirmation and/or alteration of geotechnical recommendations or design guidelines presented herein.

11.0 DRAINAGE SYSTEMS

Where temporary or permanent drainage systems are installed within or around a structure, the systems which will be installed must protect the structure from loss of ground due to internal erosion and must be designed so as to assure continued performance of the drains. Specific design detail of such systems should be developed or reviewed by the geotechnical engineer. Unless otherwise specified, it is a condition of this report that effective temporary and permanent drainage systems are required and that they must be considered in relation to project purpose and function.

12.0 BEARING CAPACITY

Design bearing capacities, loads and allowable stresses quoted in this report relate to a specific soil or rock type and condition. Construction activity and environmental circumstances can materially change the condition of soil or rock. The elevation at which a soil or rock type occurs is variable. It is a requirement of this report that structural elements be founded in and/or upon geological materials of the type and in the condition assumed. Sufficient observations should be made by qualified geotechnical personnel during construction to assure that the soil and/or rock conditions assumed in this report in fact exist at the site.

13.0 SAMPLES

Tetra Tech EBA will retain all soil and rock samples for 30 days after this report is issued. Further storage or transfer of samples can be made at the Client's expense upon written request, otherwise samples will be discarded.

14.0 INFORMATION PROVIDED TO TETRA TECH EBA BY OTHERS

During the performance of the work and the preparation of the report, Tetra Tech EBA may rely on information provided by persons other than the Client. While Tetra Tech EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, Tetra Tech EBA accepts no respons bility for the accuracy or the reliability of such information which may affect the report.

Phase I Environmental Site Assessment 3101 – East Kent Avenue South Vancouver, British Columbia

PRESENTED TO City of Vancouver

JANUARY 7, 2016 ISSUED FOR USE FILE: ENV.VENV03059-01

> Tetra Tech EBA Inc. Suite 1000 – 10th Floor, 885 Dunsmuir Street Vancouver, BC V6C 1N5 CANADA Tel 604.685.0275 Fax 604.684.6241

This page intentionally left blank.

EXECUTIVE SUMMARY

Tetra Tech EBA Inc. (Tetra Tech EBA) was retained by Ms. Amber Bongiovanni, of the City of Vancouver, to conduct a Phase I Environmental Site Assessment (Phase I ESA) of a parkland property located at 3010 – East Kent Avenue South, in Vancouver, BC (herein referred to as "Property"). This Phase I ESA is being sought by the client for purposes related to future re-development of the Property.

Based on the information reviewed by Tetra Tech EBA, the Property was used for various industrial purposes, including lumber storage and a paint factory, from the 1950s through the 1990s. The parkland use of the Property commenced in the late 1990s. The southern portion of the Property, formerly part of the Fraser River, was infilled in the early 1950s prior to occupation of the Property by the paint factory and lumber yard.

During the preparation of this Phase I ESA, Tetra Tech EBA considered the information reviewed to assess the present conditions and historical site activities at the Property and at adjacent sites in the context of evaluating potential environmental concerns.

Based on the findings described in this ESA, three Areas of Potential Environmental Concern (APECs) were identified on the Property. These APECs are outlined in the following table.

APEC Number	Description	Rationale	PCOCs
1	Former Paint Factory located on the Property from approximately 1971 to 1986.	According to city directories and the BC Site Registry (Site ID 108), a paint factory was located on the Property from approximately 1971 to 1986, and evidence from the aerial photographs may indicate that the factory was present prior to 1971. Aerial photographs also showed several items, including several drums, demolition debris, and some unidentifiable material to be present on the Property after the removal of the factory.	BTEX, VPHs, VOCs, LEPH, HEPH, metals
2	Fill from unknown source on the Property.	The south portion of the Property consists of fill that was put into the Fraser River to close the channel between the historic Rowling Island and the north shore of the Fraser River. The fill first appeared in the 1954 aerial photograph. The fill was obtained from an unknown source, however, it was common for imported fill in that time to consist of refuse, debris and industrial waste, which can present an environmental risk to a Property.	LEPH/HEPH, PAH, metals
3	Fill from historic stream potentially on the Property.	A review of the Department of Fisheries and Ocean Canada's Lost Streams Map identified one historic stream as potentially passing through the Property. It was common for imported fill to consist of refuse, debris and industrial waste, which can present an environmental risk to a Property with any historic streams.	LEPH/HEPH/PAH, metals,

Table A: Property – Areas of Potential Environmental Concern

Notes: BTEX = Benzene, Toluene, Ethylbenzene, Xylene. LEPH/HEPH = Light/Heavy Extractable Petroleum Hydrocarbons. PAH = Polycyclic Aromatic Hydrocarbons. VPH = Volatile Petroleum Hydrocarbons, VOCs = Volatile Organic Compounds Potential Contaminants of Concern (PCOCs)

In addition, two APECs were identified off the Property. These are outlined in the following table.

APEC Number	Description	Rationale	PCOCs
4	Various industrial facilities, including construction facilities, a sawmill, concrete plant, and trucking companies located at 2922 – East Kent Avenue South.	 The review of city directories, aerial photographs and a previous report (Section 2.7) revealed the following historical land uses at 2922 East Kent Avenue South (approximately 85 m west of the Property): Lumber mill facilities (approximately 1938 to 1949) Concrete plant facilities (approximately 1956 to 1972) Trucking companies (approximately 1972 to 1983 and 1989 to 1992) Various construction companies, marine contractors and automobile repair facilities (approximately 1983 to 1991) An UST and several ASTs were identified on the site during previous investigations. An environmental investigation and remediation was carried out on this site in 2009 (Section 2.7). The investigation found no groundwater contamination, but identified antimony, arsenic, molybdenum, copper, and zinc in exceedance of CSR RL standards in soil along the north edge of the site covering approximately 90 m² from surface to 0.6 m depth. The identified contamination was remediated. Because the boundaries of this historic site have changed since the historical occupancy, contamination was found on the site, and because of the nature of the businesses formerly occupying the site, it is Tetra Tech EBA's professional opinion that there may have been impacts to neighbouring sites, including the Property, that were not detected during the investigation detailed above. 	LEPH, HEPH, PAH, VOCs, metals
5	Ocean Concrete Plant and Asphalt Plant located adjacent to the east Property boundary at 8605 – East Kent Avenue South.	An asphalt manufacturing plant and Ocean's Concrete plant were listed in the city directories at 8605 – Kerr Street from 1971 to 1981, although a review of the aerial photographs suggests that at least one of these facilities may have existed until circa 1986. Though these facilities were located cross-gradient to the Property, it is Tetra Tech EBA's professional opinion that the above historical activities on the site had potential to environmentally impact the Property because of their close proximity to the Property.	LEPH/HEPH/PAH, metals

Table B: Surrounding Area – Areas of Potential Environmental Concern

Notes: BTEX = Benzene, Toluene, Ethylbenzene, Xylene. LEPH/HEPH = Light/Heavy Extractable Petroleum Hydrocarbons. PAH = Polycyclic Aromatic Hydrocarbons. VPH = Volatile Petroleum Hydrocarbons, VOCs = Volatile Organic Compounds

Based on the results of the Phase I ESA, Tetra Tech EBA recommends that a subsurface investigation in the form of a Phase II ESA, including drilling or testpitting, should be carried out on the Property to investigate potential impacts from APECs 1 through 4 in soil, groundwater, and soil vapour.

TABLE OF CONTENTS

EXE	CUTI	VE SUN	IMARY	I
1.0	INTE	RODUC	TION	. 1
	1.1	Gener	al	1
	1.2	Scope	of Work	1
2.0	SITE	DESC	RIPTION	2
	2.1	Locatio	on and Current Legal Description	2
	2.2	Potabl	e Water Supply	2
	2.3	Currer	It Property Facilities	2
	2.4	Specia	al Attention Items	3
	2.5	Surrou	Inding Sites	3
	2.6	Intervi	ews	4
	2.7	Previo	us Environmental Investigations	4
3.0	NAT	URAL	SETTING	7
	3.1	Geolog	gical Information	7
	3.2	Topog	raphy and Hydrogeology	7
	3.3	Stream	ns and Adjacent Waterbodies	7
	3.4	Histori	c Streams	7
	3.5	Drinkir	ng Water Wells	7
4.0	HIS	FORIC	AL REVIEW	8
	4.1	Histori	c Property and Surrounding Area Land Uses	8
		4.1.1	Municipal Records	.10
		4.1.2	Schedule 2 Activities	.10
	4.2	BC Or	line Site Registry Search	.10
5.0	DIS	CUSSIC	DN	11
	5.1	Proper	ty	.11
		5.1.1	Property – Low Risk Issues	.11
		5.1.2	Property – Areas of Potential Environmental Concern	.11
	5.2	Surrou	Inding Area	.12
		5.2.1	Surrounding Area – Low Risk Issues	.12
		5.2.2	Surrounding Area – Areas of Potential Environmental Concern	.13
6.0	CON		ONS AND RECOMMENDATIONS	14
7.0	CLC	SURE.		15

LIST OF TABLES IN TEXT

Table A: Property – Areas of Potential Environmental Concern	i
Table B: Surrounding Area – Areas of Potential Environmental Concern	ii
Table 2.1: Parcel ID, Civic Address, and Municipal Information	2
Table 2.2: Current Surrounding Sites	4
Table 2.3: Previous Environmental Reports (Surrounding Sites)	5
Table 4.1: Property and Surrounding Land Use Summary	8
Table 5.1: Property – Low Risk Issues & Rationale	11
Table 5.2: Property – Areas of Potential Environmental Concern	12
Table 5.3: Surrounding Area – Low Risk Issues & Rationale	12
Table 5.4: Surrounding Area – Areas of Potential Environmental Concern	13

APPENDIX SECTIONS

FIGURES

Figure 1	Property Location Plan
Figure 2	Property and Surrounding Use Plan
Figure 3	Areas of Potential Environmental Concern

APPENDICES

- Appendix A Tetra Tech EBA's General Conditions
- Appendix B Land Title and Legal Lot Plan
- Appendix C Photographs
- Appendix D Lost Streams Map
- Appendix E Water Resources Atlas Search Results
- Appendix F Site Registry Search Results

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the City of Vancouver and their agents. Tetra Tech EBA Inc. (Tetra Tech EBA) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the City of Vancouver, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in Tetra Tech EBA's Services Agreement. Tetra Tech EBA's General Conditions are provided in Appendix A of this report.

1.0 INTRODUCTION

1.1 General

Tetra Tech EBA Inc. (Tetra Tech EBA) was retained by Amber Bongiovanni of the City of Vancouver to conduct a Phase I Environmental Site Assessment (Phase I ESA) at 3010 – East Kent Avenue South, Vancouver, BC (herein referred to as the "Property"). This Phase I ESA is being conducted for purposes relating to the future development of the site.

The objective of the Phase I ESA is to assess the potential presence of contaminants, hazardous materials, or waste materials of a deleterious nature on the subject Property. The present and past activities at the Property and at the surrounding sites were reviewed to establish the potential for significant adverse impacts (if any) on the environmental status of the Property. This review was limited to the activities presented in the following sections of the report. Much of this review involved the interpretation of acquired historic documents and discussions with individuals with purported knowledge of the subject. Such sources of information are not exhaustive or reliable to a level of certainty.

Moreover, while Tetra Tech EBA is skilled at preparing the technical aspects of Phase I ESAs, we do not consider ourselves to be expert in assessing the reliability of witnesses or the accuracy, availability, completeness or reliability of historic documents and information.

In our report, we refer to potential sources of contamination as 'issues'. Any issues that have a moderate or high potential to result in soil and/or groundwater concentrations exceeding the applicable provincial standards are termed Areas of Potential Environmental Concern (APECs). The regulated chemicals associated with contamination sources in each APEC are termed Potential Contaminants of Concern (PCOCs). If any APECs are identified in the Phase I ESA, a sampling investigation will be recommended to confirm the presence or absence of the PCOCs.

Tetra Tech EBA received written authorization from the City of Vancouver to proceed with the Phase I ESA on December 15, 2015.

1.2 Scope of Work

Scope of work for the Phase I ESA included the following:

- Visually observing the Property and the surrounding areas to identify evidence and sources of possible contamination or environmental impairment, and to assess the presence and specific locations of any critical environmental features.
- Reviewing the following historical records: aerial photographs, city directories, fire insurance maps, and building plans to assess historical occupancy and activities on the Property and surrounding sites.
- Collecting information pertaining to environmental concerns about the Property from the City of Vancouver and British Columbia Ministry of Environment (MoE).
- Reviewing available published geological and hydrogeological information.
- Interviewing the individuals who are purportedly familiar with the Property to obtain background information on past and current operations and operating practices.

 Providing a report that summarizes our opinion respecting the likelihood of contamination at the Property based on our review of the information detailed within this report.

The scope of work for the Phase I ESA specifically excluded the sampling of soil and groundwater for environmental purposes. The protocol followed to complete the Phase I ESA generally conformed to the requirements of the Contaminated Sites Regulation (CSR) of British Columbia and current best practice guidelines. In addition, this report generally conforms to the Canadian Standards Association (CSA) Standard Z768-01 for conducting a Phase I ESA.

2.0 SITE DESCRIPTION

2.1 Location and Current Legal Description

The Property is located in the City of Vancouver, BC and consists of one legal lot. A site location plan is shown on Figure 1. The Property and Surrounding Use Plan is included as Figure 2. All APECS identified are shown as Figure 3.

The legal description for the Property is:

Lot 7 District Lots 330, 2100 and 6320 Group 1 New Westminster District Plan LMP31809

The current land title and legal lot plan are provided in Appendix B.

The Parcel Identifier (PID), civic address, zoning, official community plan, and coordinates of the Property are presented in the following table:

Table 2.1: Parcel ID, Civic Address, and Municipal Information

Parcel ID	Civic Address	Municipal Zoning	CD Guidelines	Latitude	Longitude
023-668-296	3101 – East Kent Avenue South	CD-1 (247)	CD-1 (247) By- law No. 6533	49º 12' 21.6" N	123º 02' 40.3" W

Notes: CD-1 (247) indicates the Property is zoned as Comprehensive Development for medium density residential development with some commercial use.

A Property Location Plan is presented as Figure 1.

2.2 Potable Water Supply

Potable drinking water is supplied to the residents of this area of Vancouver from reservoirs operated by Metro Vancouver located approximately 25 km north of the Property, through a piped water distribution system.

2.3 Current Property Facilities

Tetra Tech EBA's representative, Mr. Brian Beulah, visited the Property on December 17, 2015. Selected photographs taken during the Property inspection are presented in Appendix C.

The site inspection involved a visual inspection of the surface of the Property, including stains or suspect materials on-site, a limited visual review of accessible areas inside the on-site buildings and outside areas, and an assessment of the current conditions of vegetated areas on the Property. A walkover was conducted on neighbouring properties via publicly accessible areas to assess if there were any environmental concerns with the potential to adversely impact the soil and groundwater quality beneath the Property.

The area of the Property was approximately 4,000 m². There were no buildings on the Property and the entire Property was covered with grass. Sparse trees grew on the east and north Property boundaries. The Property appeared to be used as parkland.

Above-Ground Storage Tanks (ASTs) or Underground Storage Tanks (USTs)

Tetra Tech EBA observed the Property for indications of ASTs and/or USTs, which included suspect vent or filler pipes, fuel lines, stained areas, and field evidence of stressed vegetation. No ASTs or USTs were identified on the Property.

Fill Material

Based on the local and regional topography, the presence of rip-rap on the shoreline south of the Property, as well as evidence from Fire Insurance Maps and aerial photographs (Section 4.1), the southern portion of the Property appears to have been constructed on fill. Infilling of the Fraser River to close the channel between the historic Rowling Island and the north shore of the Fraser River, including the site, was done in the early 1950s, circa 1954. The origin of fill is unknown; however, it was common for imported fill in that time to consist of refuse, debris and industrial waste.

Property Drainage

As the Property was unpaved and vegetated, water on the Property likely drained naturally into the underlying soils. Any runoff would likely flow onto the adjacent Property to the south and then into the Fraser River. The Property visit took place during a heavy rainfall, and extensive pooling and ponding of water was observed across the Property.

2.4 Special Attention Items

Prior to the discovery of their potentially hazardous effects on human health and/or the environment, Special Attention Items were historically used in certain building materials. These Special Attention Items consist of, but may not limited to include polychlorinated biphenyls, asbestos-containing building materials, lead, urea formaldehyde foam insulation, ozone-depleting substances, mould, and/or mercury.

The presence of these Special Attention Items was not investigated as there were no buildings on the Property at the time of the site visit.

2.5 Surrounding Sites

During the site inspection, publicly accessible or visible portions of adjacent sites were viewed by Tetra Tech EBA to identify potential environmental concerns (if any) capable of impacting the environmental status of the Property.

Table 2.2: Current Surrounding Sites

Direction	Address	Current Tenants & Environmental Observations
	2998 – East Kent Avenue South	The site adjacent to the west of the Property was occupied by Riverfront Park. The entire site was covered by grass and trees. A walking path crossed the southern portion of the site.
West	2922 – East Kent Avenue South	The site, located approximately 90 m west of the Property, was vacant and surrounded by temporary fencing. Approximately 20% of the site was covered in broken, weathered pavement, and the remainder was bare ground with some sparse vegetation. Four groundwater monitoring wells were observed on the site: one each on the north, east, and south borders, and one near the center of the Property.
	CP Rail Right-of-Way (ROW)	The CP Rail ROW extended east to west along the north side of East Kent Avenue South, and passed within 20 m of the northern Property boundary.
West North East South	3000 to 3099 – East Kent Avenue North	These sites were all occupied by multi-family residential buildings, with the exception of 3099 – East Kent Avenue North, which was vacant with grass and large trees. No items of environmental significance were observed on these sites.
	8515 – Aquatania Place	This site was occupied by a large, multi-storey residential apartment building surrounded by landscaped areas and a small parking area.
East	8683 – Kerr Street	A building housing a community center and restaurant occupied the south portion of the site. A landscaped parking area occupied the north portion.
South	Riverfront Park	The land to the south of the Property was occupied by landscaped parkland. Approximately 95% of the area was occupied by grasses with sporadic trees, and the remaining 5% was occupied by walking paths. Beyond the parkland, the Fraser River extended east to west and passed within approximately 50 m of the south Property boundary. The shoreline was mainly composed of rip-rap with a small marshy area.

A review of the current surrounding land use at adjacent sites identified the presence of one item of potential environmental significance – the presence of four groundwater monitoring wells at 2922 – East Kent Avenue South. The current activities on the remaining surrounding sites were considered to pose a low environmental risk to the Property and therefore do not warrant further discussion. The historic activities on this/these sites are discussed in Section 6.0.

2.6 Interviews

An interview was conducted with Ms. Amber Bongiovanni of the City of Vancouver via email. Ms. Bongiovanni provided three previous environmental reports for sites near the Property. Information obtained from Ms. Bongiovanni has been included in the appropriate sections of this report.

2.7 Previous Environmental Investigations

Tetra Tech EBA inquired with the City of Vancouver as to whether they were aware of any previous environmental reports for the Property. The City of Vancouver was not aware of any previous environmental reports for the Property, however, they did provide three reports relating to neighbouring sites. The following table lists previous environmental reports for surrounding sites that were provided to Tetra Tech EBA from the City of Vancouver:

Table 2.3:	Previous	Environmental	Reports	(Surrounding	Sites)
I GIOTO LIOT	1 1011040		110 00110	a an o an anny	0.0001

Report / Document Number	Title	Date	Approximate Distance and Direction from the Property
1	<u>Stage 1 and 2 PSI, DSI and Confirmation of Remediation: 2910 - East</u> <u>Kent Avenue South Vancouver, British Columbia.</u> Prepared by Pottinger Gaherty Environmental Consultants Ltd. for the City of Vancouver.	May 2007	85 m west (inferred cross-gradient)
2	<u>Phase I Environmental Site Assessment: 2780 and 2800 - Southeast</u> <u>Marine Drive, Vancouver, BC.</u> Prepared by Hemmera Envirochem Inc. for the City of Vancouver.	May 2015	210 m west (inferred cross- gradient)
3	<u>Phase I Environmental Site Assessment: 3098 - Southeast Marine Drive</u> <u>and 3099 – East Kent Avenue North.</u> Prepared by Hemmera Envirochem Inc. for the City of Vancouver.	March 2015	100 m northeast (inferred cross- gradient)

Tetra Tech EBA reviewed the reports for information relevant to this Phase I ESA. The reports were reviewed to identify potential sources of contamination that could result in soil, groundwater, sediment, and/or soil vapour contamination at the Property. The purpose of the review was for information purposes only and not to comment or confirm the adequacy of the report and/or whether it conformed to current provincial standards. A discussion of the each report is presented below. In addition, information from the reports has been integrated into the appropriate sections of this report as necessary.

1. Stage 1 and 2 PSI, DSI, and Confirmation of Remediation: 2910 – East Kent Avenue South

In May 2007, Pottinger Gaherty Environmental Consultants Ltd. (PGL) conducted a Stage 1 Preliminary Site Investigation (PSI), a Detailed Site Investigation (DSI), and remediation on the site currently addressed as 2922 – East Kent Avenue South, approximately 85 m east of the Property. At the time of the report, the site was addressed as 2910 East Kent Avenue South. The detailed report for BC Site Registry site number 108 suggested that this site may have been part of a larger area addressed as 2950 – Southeast Marine Drive for approximately 20 to 25 years, however, the PGL report suggests that 2950 – Southeast Marine Drive may have been adjacent to the site. Tetra Tech EBA reviewed the PGL reports and noted the following information that may be relevant to the Property:

Stage 1 PSI

- The site was historically occupied by various industrial occupants including:
 - Lumber mill facilities (approximately 1938 to 1949)
 - Concrete plant facilities (approximately 1956 to 1972)
 - Trucking companies (approximately 1972 to 1983 and 1989 to 1992)
 - Various construction companies, marine contractors and automobile repair facilities (approximately 1983 to 1991)
- An UST and several ASTs were identified on the site during previous investigations. PGL removed the UST and remediated the surrounding soil in 1995.

- The former 2950 Southeast Marine Drive, adjacent to the east of 2922 East Kent Avenue South (includes the Property), was occupied by a paint factory operated by Color Your World and Tonecraft Paints from approximately 1971 until 1995.
- Six APECs were identified on the site which were related to the former industrial use of the site, a waste oil
 UST formerly located on the site, lumber storage, automobile and truck repair, and filling of an arm of the
 Fraser River that formerly flowed across the site.
- One offsite APEC was identified, this was the paint factory that occupied the sites adjacent to the east (including the Property).

Stage 2 PSI, DSI, and Remediation

- Soil and groundwater testing was carried out at all seven identified APECs. Concentrations of the PCOCs were
 found to be below the applied standards (Soil: CSR residential land use [RL], Groundwater: flow to surface
 water used by aquatic life [AW]) at all APECs with the exception of one; soil concentrations of antimony,
 arsenic, molybdenum, copper, and zinc in exceedance of the RL standards along the north edge of the site.
- A combined DSI and remediation were completed on the site. The confirmatory sampling performed on the remedial excavation indicated that concentrations of the PCOCs were below RL standards. The excavation covered approximately 90 m² and was 0.6 m deep.
- The MoE issued a Certificate of Compliance (CoC) for the site based on numerical standards upon completion of the remediation.

2. Phase I ESA: 2780 and 2802 – Southeast Marine Drive

In May 2015, Hemmera Envirochem Inc. (Hemmera), conducted a Phase I ESA on the sites formerly addressed as 2780 and 2800 – Southeast Marine Drive. These were likely part or all of the sites that have the addresses 2770 and 2802 – Southeast Marine Drive. The final report is incomplete as it was discovered that a CoC had been issued for the site.

The report documents historical vehicle maintenance, repair, and storage activities that occurred from the late 1960s to early 1990s at 8495 – Jellicoe Street (approximately 210 m northwest of the Property). These former activities were cross-gradient to the Property and therefore Tetra Tech EBA considers there is a low potential for contaminants to have migrated from the site to the Property.

3. Phase I ESA: 3098 – Southeast Marine Drive and 3099 North Kent Avenue East

In March 2015, Hemmera conducted a Phase I ESA on the sites formerly addressed as 3098 – Southeast Marine Drive and 3099 – East Kent Avenue west. Significant findings included:

- The Kerr Street landfill operated northeast of the site from the mid-1930s to approximately 1966. The landfill
 was considered a low risk to the site, due to the distance (250 to 450 m) and its cross-gradient location from
 the site.
- The site itself was undeveloped and vegetated from the 1930s to the time of the report.

3.0 NATURAL SETTING

3.1 Geological Information

The Geological Survey of Canada Map 1486A indicated that the surficial geology in the area of the Property consisted of Quaternary Fraser River Sediments, which are made up of overbank silty to silt clay loam normally less than 2 m thick. These sediments may overlie 15 m or more of deltaic or distributary channel fill, interbedded fine to medium sand and minor silt beds possibly containing organic or fossiliferous material.

The soils beneath the Property range from medium grained sands, which have typically demonstrate relatively high permeability, to silty clay, which is usually of low permeability. For this reason groundwater velocities in the vicinity of the Property may be variable.

3.2 Topography and Hydrogeology

The topography of the Property is relatively flat, however, the Property slopes very slightly downwards toward the Fraser River, which is located approximately 50 m south of the Property. Topography to the north of the Property slopes steeply downwards and southward towards the Fraser River.

For the purpose of this Phase I ESA, the local groundwater flow is inferred to flow south towards the Fraser River. However, shallow groundwater in the vicinity of the river and the Property may be influenced by fluctuations in river level, as well as river flow rate and direction. In addition, catch basins, drainage systems, underground service trenches, and other subsurface structures in the area may influence the local groundwater flow direction.

3.3 Streams and Adjacent Waterbodies

Activities on a site have the potential to contaminate the sediments of waterbodies that cross through or are adjacent to the Property. Potential contaminants may be transported to the waterbodies by means of overland surface flow and groundwater infiltration. In addition, sites located upstream of the Property have the potential to contaminate the waterbodies passing through or adjacent to the Property, which could potentially result in contamination of the Property's soil, groundwater, and/or sediment.

In this case, the Fraser River flowed to the west and passed within 50 m of the south Property boundary. No surface water bodies were observed on the Property.

3.4 Historic Streams

Before establishment of the Lower Mainland cities, a little more than a century ago, the Lower Mainland was a forested wetland, criss-crossed by streams. Today many of these waterways have been buried under fill as the cities have expanded. It was common for imported fill to consist of refuse, debris and industrial waste, which can present an environmental risk to a Property with any historic streams.

A copy of the Department of Fisheries and Oceans Canada's Lost Streams Map was referenced for historic streams on or in the vicinity of the Property. One historic stream was identified as potentially passing through the Property. The Lost Streams Map is attached in Appendix D.

3.5 Drinking Water Wells

A search of the MoE aquifer and water well database was conducted for registered water wells within a 500 m radius from the center of the Property, which is the search radius specified in MoE Technical Guidance Document 6 *"Water Use Determination"*. The search did not reveal any water wells registered for domestic or drinking water

system supply use. Expanding the search criteria to include wells of unknown use returned five wells, all located to the north-northwest of the Property.

A copy of the water well search results for this area obtained from the British Columbia Water Resources Atlas is included in Appendix E.

4.0 HISTORICAL REVIEW

The following subsections present a summary of the Property's history obtained from a review of historical city directories, aerial photographs, and municipal records.

4.1 Historic Property and Surrounding Area Land Uses

The history of the Property was interpreted based on a review of aerial photographs (from 1938, 1947, 1951, 1954, 1963, 1969, 1974, 1979, 1984, 1992, 1999, and 2004), and city directories (from 1933, 1950, 1956, 1961, 1966, 1971, 1976, 1981, 1986, 1991, and 1997).

A historical title search was not considered to be necessary as Tetra Tech EBA had sufficient information on the Property from city directories, aerial photographs and other previously completed environmental reports in the area.

Approximate Year	Land Use / Owner	Source(s)
1938 – 1947	The Property appeared undeveloped and vegetated, and was bordered on the north by the former BC Electric Railway tracks. The south portion of the Property was occupied by a channel of the Fraser River, which separated the historical Rowling Island from the Property. Buildings having apparent industrial use appeared west of the Property and bordered on the present-day Jellicoe street – these may have been the Northern Crown Sawmill , which is listed in the 1950 city directory. Land north of East Kent Avenue appeared undeveloped and vegetated, and the Fraserview Golf Course appeared north of Southeast Marine Drive. Buildings and land apparently used as a sawmill and lumber yard appeared east of Kerr Street and south of BC Electric Railway tracks.	Aerial Photographs, City Directories
1947 – 1951	The Property appeared to be used as a lumber storage yard for the Northern Crown Sawmill located west of the Property. A channel appeared north to south, bisecting the historical Rowling Island. No other significant changes from previous.	Aerial Photographs, City Directories
1951 – 1954	The historical Kerr Street Landfill appeared approximately 700 m northeast of the Property (inferred cross-gradient)	Aerial Photographs
1954 – 1963	The Northern Crown Sawmill located east of the Property and the lumber storage yard on the Property no longer appeared. A long structure appeared to extend east to west across the north portion of the Property (identity and purpose unknown). The channel of the Fraser River between the historical Rowling Island and the north river bank appeared to be filled in, joining Rowling Island to the north river bank. The buildings and storage yard to the east of Kerr Street are listed at 8450 – Kerr Street in the 1956 directory as a cedar products and shingle manufacturer. A concrete plant is also listed at this location in 1961.	Aerial Photographs, City Directories

Table 4.1: Property and Surrounding Land Use Summary

Approximate Year	Land Use / Owner	Source(s)
1963 – 1 969	The Property and surrounding land to the east and west appears to be occupied by an industrial building and storage yard. Though not listed in city directories until 1971, these buildings may have been part of the former Tonecraft Paints offices and factory . The Kerr Street landfill appeared to have expanded to 350 m northeast of the Property.	Aerial Photographs, City Directories
1969 – <mark>1</mark> 974	The 1971 directory contains a listing for the Tonecraft Paints factory at 2950 – Southeast Marine Drive, which encompassed the Property and the surrounding sites to the west. The site adjacent to the east Property boundary appeared to be used for aggregate and gravel storage. These may have been part of the Ocean's Cement Plant listed at 8450 – Kerr Street in the 1966 city directory, or they may have been associated with an Asphalt Plant listed in the 1971 City directory at 8605 – Kerr Street. Ocean Cement and Steel is also listed in the 1971 city directory at 2900 – East Kent Avenue. The Kerr Street Landfill appeared to have expanded to approximately 280 m northeast of the Property. An industrial building and junkyard appeared on Jellicoe Street, approximately 150 m northwest of the Property.	Aerial Phot <mark>ographs,</mark> City Directories
1974 <mark>– 1</mark> 986	The 1976 city directory lists the Tonecraft Paints factory at 2950 – Southeast Marine Drive, and in 1981 this facility is listed as Color Your World Paint Factory . East Kent Avenue appears connected between Jellicoe Street and Kerr Street in the 1974 aerial photograph. Ocean Cement and Steel is still listed in the 1976 and 1981 city directories at 2900 – Kerr Street and at 8605 – Kerr Street. An asphalt plant is also listed at 8605 – Kerr Street in 1976 and 1981. The site adjacent to the east Property boundary appeared to have manufacturing facilities associated with the gravel and aggregate piles. The Kerr Street Landfill appeared to be partially vegetated in the 1974 aerial photograph.	Aerial Photographs, City Directories.
1986 – 1991	Though the Color Your World Paint Factory is listed in the 1986 city directory, the Property appears vacant with the buildings removed. Large amounts of industrial waste, including drums, lumber, and shipping containers, appear strewn across the Property and adjacent sites to the west. The previously listed concrete and asphalt facilities are not listed in the 1986 city directory, however, the site of the former concrete plant appeared to have industrial use and was occupied by one building with large numbers of drums stored on the site.	Aerial Photographs, City Directories
1991 – 1997	The Property appeared vacant and surfaced with gravel. The adjacent sites to the east and west appeared to have industrial use, however the specific use could not be determined from the aerial photograph. Davey Cartage Trucking is listed in the 1991 city directory at 2910 – East Kent Avenue South. The sites to the north of the Property, across the BC Electric Railway tracks and East Kent Avenue, appeared to have multi-family residential land use.	Aerial Photographs, City Directories

Approximate Year	Land Use / Owner	Source(s)
1997 – 2004	The Property appeared grassed and landscaped and converted to parkland use. The adjacent land to the south Property boundary appeared to have been filled into the river, and walking paths appeared on the newly filled area. The land adjacent to the east and west Property boundaries appeared vacant and cleared. No other significant changes observed.	Aerial Photographs, City Directories
2004	The site adjacent to the east Property boundary appeared to have been developed into multi-family residential use.	Aerial Photographs
2009	No significant changes.	Aerial Photographs

4.1.1 Municipal Records

According to the City of Vancouver VanMap mapping service, the Property is zoned as Comprehensive Development (247) for residential development and light commercial use.

4.1.2 Schedule 2 Activities

Schedule 2 of the CSR lists a number of activities that have a potential to cause contamination. If a zoning, development, removal of soil or a demolition permit is requested from the City of Vancouver, then completion of a form "Site Profile" will be required. When Schedule 2 activities have historically occurred, the requested municipal permit may trigger a review by the MoE. If a review were necessary, then a MoE instrument (e.g. Certificate of Compliance) would be necessary.

The historic review identified one Schedule 2 activity on the Property, this was:

• A8: Paint, lacquer or varnish manufacturing, formulation, recycling, or wholesale bulk storage.

The above activity took place from the historical presence of Tonecraft/Color Your World Paint factory on the Property and adjacent sites from approximately 1971 to 1996 (Section 4.1).

4.2 BC Online Site Registry Search

The MoE maintains a database called the Site Registry that contains environmental information pertaining to contaminated or potentially contaminated sites. The Site Registry documents milestones in the cleanup process of a site. The Site Registry contains information on sites that have been investigated and cleaned up in British Columbia since 1988 (when MoE began recording this activity). All of the information is accessible to the public.

The Site Registry is *not* a registry solely of contaminated sites. Some sites in the registry are contaminated, but most are simply being investigated and require little, if any, cleanup or they have already been cleaned up to government standards.

The database can be searched on the basis of geographic location or PID. The lack of information on a particular site does not indicate an absence of contamination, but only an absence of MoE documentation.

An area search conducted using this online database for a region within a 0.5 km radius of Property resulted in 13 records. Twelve of the records were considered low risk to the Property due to either their distance (>100 m) or their cross-gradient location relative to the Property.

One record included the Property. Tetra Tech EBA obtained a detailed report for this site. The detailed report is summarized below.

Site ID 0000108: Detailed Report

Addresses: 2910, 2998, 3010, 3030, 3098 - East Kent Avenue South

The detailed report contained a site profile completed for the above addresses. The site profile indicated that a paint, lacquer, and/or varnish manufacturing, formulation, wholesale storage, and/or recycling had taken place on the Property. The report also indicated that at least one UST for chemical storage had formerly been present on the Property. The above activities and indications were associated with the paint factory that had formerly occupied the Property (See Section 4.1.1).

Copies of the Site Registry search results are included in Appendix F.

5.0 DISCUSSION

The following two subsections discuss the findings of the historical review for the Property and surrounding sites, respectively. Activities with significant potential sources of contamination are termed as 'issues'. Any issues that present a moderate or high likelihood of causing significant soil and/or groundwater contamination above the applicable provincial standards are termed as APECs. Further investigation of any identified APECs would then be recommended as part of a Stage 2 PSI or DSI. No further investigation is recommended for issues that are considered to present a low likelihood of causing significant contamination above the applicable provincial standards.

5.1 Property

5.1.1 Property – Low Risk Issues

During the Phase I ESA, Tetra EBA identified one low risk environmental issue on the Property. This issue is outlined in the subsequent table along with the associated rationale.

Low Potential Environmental Contaminant Source(s)	Risk Rating	Rationale
Potential former use of the Property as a lumber storage yard (circa 1947 to 1954)	Low	 According to the aerial photographs, lumber was stored on the Property from approximately 1947 to 1954. This land use may have been associated with the adjacent Northern Crown Sawmill, located west of the Property. The Property appeared to have been used for storage activities only; and None of the records reviewed suggested that lumber treating activities had taken place on the Property.

Table 5.1: Property – Low Risk Issues and Rationale

5.1.2 Property – Areas of Potential Environmental Concern

During the Phase I ESA, Tetra Tech EBA identified three APECs were identified resulting from historical land uses on the Property. The APECs and associated rationales are presented in the following table.

APEC Number	Description	Rationale	PCOCs
1	Former Paint Factory located on the Property from approximately 1971 to 1986.	According to city directories and the BC Site Registry (Site ID 108), a paint factory was located on the Property from approximately 1971 to 1986, and evidence from the aerial photographs may indicate that the factory was present prior to 1971. Aerial photographs also showed several items, including several drums, demolition debris, and some unidentifiable material to be present on the site after demolition of the factory buildings.	BTEX, VPHs, VOCs, LEPH, HEPH, metals
2	River channel fill from unknown source on the Property.	The south portion of the Property consists of fill that was put into the Fraser River to close the channel between the historic Rowling Island and the north shore of the Fraser River. The fill first appeared in the 1954 aerial photograph. The fill was obtained from an unknown source, however, it was common for imported fill in that time to consist of refuse, debris and industrial waste, which can present an environmental risk to a Property.	LEPH/HEPH/PAH, metals
3	Fill from historic stream potentially on the Property.	A review of the Department of Fisheries and Ocean Canada's Lost Streams Map identified one historic stream as potentially passing through the Property. It was common for imported fill to consist of refuse, debris and industrial waste, which can present an environmental risk to a Property with any historic streams.	LEPH/HEPH/PAH, metals

Table 5.2: Property – Areas of Potential Environmental Concern

Notes: BTEX = Benzene, Toluene, Ethy benzene, Xylene. LEPH/HEPH = Light/Heavy Extractable Petroleum Hydrocarbons. PAH = Polycyclic Aromatic Hydrocarbons. VPH = Volatile Petroleum Hydrocarbons, VOCs = Volatile Organic Compounds

The remaining activities not discussed in Sections 5.1.1 or 5.1.2 were considered to present a low likelihood of having caused significant soil and/or groundwater contamination.

5.2 Surrounding Area

5.2.1 Surrounding Area – Low Risk Issues

During the Phase I ESA, Tetra Tech EBA identified one environmental issue with the surrounding sites that was considered to present a low likelihood of impacts to the Property. This issue is outlined in the subsequent table along with the associated rationale.

Low Risk Environmental Contaminant Source(s)	Risk Rating	Rationale
Historic Kerr Street Landfill (280 m northeast of the Property).	Low	The Kerr Street Landfill first appeared approximately 700 m northeast of the Property in the 1951 aerial photograph. In the 1969 aerial photograph, the landfill appeared to have expanded to 280 m northwest of the Property. The landfill appeared to have been closed and to be undergoing revegetation in the 1974 aerial photograph. Although landfill leachate has potential to cause environmental impacts, the potential to impact the Property is rated as low for the following rationale:

Table 5.3: Surrounding Area – Low Risk Issues and Rationale

Low Risk Environmental Contaminant Source(s)	Risk Rating	Rationale	
		 The size and distance to the Property was significant, formerly occupying a full city block and approximately 280 m to the northeast; and 	
		 The landfill was located cross-gradient relative to the Property. Any leachate leaving the landfill site is expected to flow south and would be unlikely to impact the Property. 	

5.2.2 Surrounding Area – Areas of Potential Environmental Concern

During the Phase I ESA, Tetra Tech EBA identified two issues with the surrounding sites that were considered to be APECs to the Property. These issues are outlined in the following table:

APEC Number	Description	Rationale	PCOCs
4	Various industrial facilities, including construction facilities, a sawmill, concrete plant, and trucking companies located at 2922 – East Kent Avenue South.	 The review of city directories, aerial photographs and a previous report (Section 2.7) revealed the following historical land uses at 2922 East Kent Avenue South (approximately 85 m west of the Property): Lumber mill facilities (approximately 1938 to 1949) Concrete plant facilities (approximately 1936 to 1972) Trucking companies (approximately 1972 to 1983 and 1989 to 1992) Various construction companies, marine contractors and automobile repair facilities (approximately 1983 to 1991) A UST and several ASTs were identified on the site during previous investigations. An environmental investigation and remediation was carried out on this site in 2009 (Section 2.7). The investigation found no groundwater contamination, but identified antimony, arsenic, molybdenum, copper, and zinc in exceedance of CSR RL standards in soil along the north edge of the site covering approximately 90m² from surface to 0.6 m depth. The identified contamination was remediated. Because the boundaries of this historic site have changed since the historical occupancy, contamination was found on the site, and because of the nature of the businesses formerly occupying the site, it is Tetra Tech EBA's 	LEPH, HEPH, PAH, VOCs, metals
		neighbouring sites, including the Property, that were not detected during the investigation detailed above.	

Table 5.4: Surrounding Area – Areas of Potential Environmental Concern

APEC Number	Description	Rationale	PCOCs
5	Ocean Concrete Plant and Asphalt Plant located adjacent to the east Property boundary at 8605 – East Kent Avenue South.	An asphalt manufacturing plant and Ocean's Concrete plant were listed in the city directories at 8605 – Kerr Street (adjacent to the east Property boundary) from 1971 to 1981 (although a review of the aerial photographs suggests that at least one of these facilities may have existed until circa 1986). Though these facilities were located cross-gradient to the Property, it is Tetra Tech EBA's professional opinion that the above historical activities on the site had potential to environmentally impact the Property because of their close proximity to the Property.	LEPH/HEPH/PAH, metals

Notes: BTEX = Benzene, Toluene, Ethy benzene, Xylene. LEPH/HEPH = Light/Heavy Extractable Petroleum Hydrocarbons. PAH = Polycyclic Aromatic Hydrocarbons. VPH = Volatile Petroleum Hydrocarbons, VOCs = Volatile Organic Compounds

The remaining activities not discussed in Sections 5.2.1 and 5.2.2 were considered to present a low likelihood of having caused significant soil and/or groundwater contamination to the Property.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the information reviewed by Tetra Tech EBA, the parkland use of the Property commenced in the late 1990s, on previously industrial land. During the preparation of this Phase I ESA, Tetra Tech EBA considered the information reviewed to assess the present conditions and historical site activities at the Property and at adjacent sites in the context of evaluating potential environmental concerns.

Based on the findings described in this Phase I ESA, five APECs were identified that require further investigation. Tetra Tech EBA recommends that a subsurface investigation in the form of a Phase II ESA, including drilling or testpitting, should be carried out on the Property to investigate potential impacts from APECs 1 through 5 in soil, groundwater, and soil vapour.

7.0 CLOSURE

Conclusions and recommendations presented herein are based on a visual site inspection, discussion with personnel and historical information that was reviewed at the time of this investigation. This report has been prepared based on the scope of work and for the use of the City of Vancouver, which includes distribution as required for the purposes for which this assessment was commissioned. The assessment has been carried out in accordance with generally accepted engineering practice. No other warranty is made, either express or implied. Professional judgment has been applied in developing the recommendations in this report.

This report was prepared by personnel with professional experience in investigations of this nature and who specifically conducted the investigations at this Property. Reference should be made to the 'Phase I – Environmental Report – General Conditions' attached in Appendix A that forms a part of this report.

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech EBA Inc.

Brian Balar

Prepared by: Brian Beulah, GIT Junior Environmental Geologist Environment Practice Direct Line: 778.945.5752 Brian.Beulah@tetratech.com

Reviewed by: Lori C. Larsen, P.Ag. CSAP Senior Project Manager Environment Practice Direct Line: 778.945.5820 Lori.Larsen@tetratech.com

FIGURES

- Figure 1 Property Location Plan
- Figure 2 Property and Surrounding Use Plan
- Figure 3 Areas of Potential Environmental Concern

Q:IVarcouvenGIS'ENVIRONMENTALIVENVVS059-01/Maps/VENV03059-01_Figure 01_SiteLocation.mxd modified 1/7/2016 by morgan.zondervan

Q:\Vancouver\GISVENVIRONMENTAL\VENV\VENV03059-01\Maps\VENV03059-01_Figure02_LUP.mxd modified 1/7/2016 by morgan.zondervan

Q:\Vancouver\GIS\ENVIRONMENTAL\VENV\VENV03059-01\Maps\VENV03059-01_Figure03_APECs.mxd modified 1/7/2016 by morgan.zondervan

APPENDIX A TETRA TECH EBA'S GENERAL CONDITIONS

ENVIRONMENTAL PHASE I REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites.

This report and the assessments and recommendations contained in it are intended for the sole use of Tetra Tech EBA's Client unless otherwise authorized in writing by Tetra Tech EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of Tetra Tech EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where Tetra Tech EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed Tetra Tech EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Tetra Tech EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of Tetra Tech EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Tetra Tech EBA. Tetra Tech EBA's instruments of professional service will be used only and exactly as submitted by Tetra Tech EBA.

Electronic files submitted by Tetra Tech EBA have been prepared and submitted using specific software and hardware systems. Tetra Tech EBA makes no representation about the compat bility of these files with the Client's current or future software and hardware systems.

3.0 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the Client agrees that notification to such bodies or persons as required may be done by Tetra Tech EBA in its reasonably exercised discretion.

4.0 INFORMATION PROVIDED TO TETRA TECH EBA BY OTHERS

During the performance of the work and the preparation of the report, Tetra Tech EBA may rely on information provided by persons other than the Client. While Tetra Tech EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, Tetra Tech EBA accepts no responsibility for the accuracy or the reliability of such information which may affect the report.

APPENDIX B LAND TITLE AND LEGAL LOT PLAN

TITLE SEARCH PRINT

File Reference: ENV.VENV03059

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Title Issued Under	SECTION 98 LAND TITLE ACT
Land Title District Land Title Office	VANCOUVER VANCOUVER
Title Number From Title Number	BL43974 BL43970
Application Entered	1997-02-11
Application Received	1997-02-05
Registered Owner in Fee Simple Registered Owner/Mailing Address:	CITY OF VANCOUVER 453 WEST 12TH AVENUE VANCOUVER, BC V5Y 1V4
Taxation Authority	CITY OF VANCOUVER
Description of Land Parcel Identifier: Legal Description: LOT 7 DISTRICT LOTS 330, 2100 A PLAN LMP31809	023-668-296 ND 6320 GROUP 1 NEW WESTMINSTER DISTRICT
Legal Notations	NONE
Charges, Liens and Interests Nature: Registration Number: Registration Date and Time: Registered Owner: Remarks:	INDEMNITY AGREEMENT 20105M 1940-11-21 14:10 CITY OF VANCOUVER INTER ALIA PART DERIVED FROM PARCEL A, REFERENCE PLAN 2734; SEE 56032L

TITLE SEARCH PRINT

File Reference: ENV.VENV03059

Nature: Registration Number: Registration Date and Time: Registered Owner: Registered Owner: Remarks:	COVENANT BL43971 1997-02-05 15:02 CITY OF VANCOUVER THE CROWN IN RIGHT OF BRITISH COLUMBIA INTER ALIA SECTION 215, L.T.A. MODIFIED BY BM318894
Nature: Registration Number: Registration Date and Time: Registered Owner: Remarks:	STATUTORY RIGHT OF WAY BL43981 1997-02-05 15:05 BRITISH COLUMBIA HYDRO AND POWER AUTHORITY PART IN PLAN LMP31811
Duplicate Indefeasible Title	NONE OUTSTANDING
Transfers	NONE
Pending Applications	NONE

Photos 1 to 5

Photo 1: View of the Property looking east from the west Property boundary.

Photo 2: View of the Property and adjacent site to the east, looking north from the south Property boundary. The site comprising APEC 5 is visible on the right side of the photograph.

Photo 3: View looking southwest of the site located at 2922—East Kent Avenue South. (APEC 3)

Photo 4: View looking east, of the south Property boundary. The Property is visible in the upper left .

Photo 5: A monitoring well visible south of 2922—East Kent Avenue South (APEC 4).

APPENDIX E WATER RESOURCES ATLAS SEARCH RESULTS

APPENDIX F SITE REGISTRY SEARCH RESULTS

F1. SiteRegSearchLat49Long123.txt

As Of: DEC 13, 20	15	BC Online: Site Registry 15/12/17
	For:	PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 13: 12
FOITO: ENV. VENVU3	059	Page I
13 records sele	CTED TOP	U.5 KM From Latitude 49 deg, 12 min, 21.5 sec
and Longi tud	e 123 deg	, 2 min, 40.3 sec
SITE ID	Lastupa	Address / Lity
0000108	TUJUL22	2910, 2998, 3010, 3030, 3098 EAST KENT SOUTH
0000173	0110000	
0000173	0110008	2950 SOUTH EAST MARINE DRIVE
0000212	0.000000	
0000213	UZINA Y Z 9	VANCOUVED
0000400		
0000400	UDAUGIS	ZYOU DEUCK KENT AVENUE SUUTH
0001280	0100719	2705 EAST KENT AVENUE
0001289	0100110	
0001290	010CT18	2720 SE MARINE DRIVE
0001270	0100110	VANCOUVER
0001302	03EEB06	FAST KENT SOUTH ST JELLICOF ST & LIGHTHOUSE WAY
000.001	00. 2000	VANCOUVER
0001481	97DEC04	2770 EAST KENT AVENUE SOUTH
		VANCOUVER
0001519	00APR14	2880 SOUTH EAST MARINE DRIVE
		VANCOUVER
0004444	13JUL11	2780 SE MARINE DRIVE
		VANCOUVER
0007908	05MAR23	3450 EAST KENT AVENUE
		VANCOUVER
0010107	08JAN10	3250 MARINE WAY
		VANCOUVER
0012493	11APR21	3151 EAST KENT AVE NORTH AND 8450 KERR STREET
		VANCOUVER

F2. Si teRegDetai | Si tel D108Lat49Long123. txt

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 14: 10 Folio: ENV. VENV03059 Page 1 Detail Report SITE LOCATION Latitude: 49d 12m 26.4s Site ID: 108 Victoria File: 26250-20/0053 Regional File: 26250-20/108 Region: SURREY, LOWER MAINLAND Longi tude: 123d 02m 39.5s Site Address: 2910, 2998, 3010, 3030, 3098 EAST KENT SOUTH City: VANCOUVER Prov/State: BC Postal Code: Registered: MAY 30, 1998 Updated: JUL 22, 2010 Detail Removed: JUL 21, 2010 Notati ons. 10 Parti ci pants: 16 Associated Sites: 1 5 Susp. Land Use: 3 Parcel Descriptions: Documents: 85 Location Description: FORMERLY KNOWN AS 2950 SE MARINE DR. LOCATION DERIVED BY BC ENVIRONMENT REFERENCING RECTIFIED NAD 83 ORTHOPHOTOGRAPHY - NOV. 29, 1996 Record Status: ACTIVE - UNDER ASSESSMENT Fee category: LARGE SITE, SIMPLE CONTAMINATION NOTATI ONS Notation Type: SITE PROFILE REVIEWED - NO FURTHER INVESTIGATION REQUIRED BY THE MINISTRY Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Approved: Initiated: JUL 21, 2010 Ministry Contact: LARSEN, KELLI Note: DECISION FOR THE LIMITED PURPOSE OF THE DEMOLITION PERMIT APPLICATION APPROVAL (RELEASE UNDER SCENARIO 2) Notation Type: SITE PROFILE ORDER ISSUED Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: JUL 21, 2010 Approved: JUL 21, 2010 Ministry Contact: LARSEN, KELLI Notation Participants Notation Roles LARSEN, KELLI I SSUED BY Required Actions: A SITE PROFILE MUST BE SUBMITTED TO THE DIRECTOR PRIOR TO OBTAINING ANY FUTURE APPROVALS FOR SUBDIVISION, ZONING, SOIL REMOVAL, DEVELOPMENT, OR DEVELOPMENT VARIANCE. Notation Type: PRELIMINARY SITE INVESTIGATION ORDER ISSUED Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: JUL 21, 2010 Approved Approved: JUL 21, 2010 Ministry Contact: LARSEN, KELLI

Page 1

F2. Si teRegDetai | Si tel D108Lat49Long123. txt

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11:14:10 Folio: ENV. VENV03059 Page 2 NOTATI ONS Notation Participants Notation Roles LARSEN, KELLI **ISSUED BY** Required Actions: PRELIMINARY SITE INVESTIGATION REQUIRED, FOLLOWING BY A DETAILED SITE INVESTIGATION IF CONTAMINATION IS IDENTIFIED. Notation Type: SITE PROFILE - NO FURTHER INVESTIGATION REQUIRED BY THE $\ensuremath{\mathsf{MINISTRY}}$ Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: JUL 21, 2010 Approved: Ministry Contact: LARSEN, KELLI Note: DECISION FOR THE LIMITED PURPOSE OF THE DEMOLITION PERMIT APPLICATION APPROVAL (RELEASE UNDER SCENARIO 2) Notation Type: SITE PROFILE RECEIVED Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: JUN 21, 2010 A Approved: Ministry Contact: LARSEN, KELLI Notation Participants Notation Roles CITY OF VANCOUVER SITE PROFILE SUBMITTED BY CITY OF VANCOUVER SITE PROFILE SUBMITTED ΒY - - - - - - -Notation Type: SITE PROFILE RECEIVED Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: JUN 21, 2010 Approved: Ministry Contact: LARSEN, KELLI Notation Participants Notation Roles CITY OF VANCOUVER SITE PROFILE SUBMITTED ΒY CITY OF VANCOUVER SITE PROFILE SUBMITTED ΒY Notation Type: CERTIFICATE OF COMPLIANCE ISSUED USING NUMERICAL STANDARDS Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: JUL 24, 2007 Approved: JUL 24, 2007 Ministry Contact: LOCKHART, DAVE Notation Roles Notation Participants CITY OF VANCOUVER RECEIVED BY WALTON, DOUG G I SSUED BY

F2. Si teRegDetai | Si tel D108Lat49Long123.txt APPROVED PROFESSI ONAL

Approved:

GAHERTY, WILLIAM

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 14: 10 Page 3 NOTATIONS

Note: ISSUED ON THE RECOMMENDATION OF AN APPROVED PROFESSIONAL (WILLIAM D. GAHERTY) UNDER PROTOCOL 6 OF THE CONTAMINATED SITES REGULATION THIS NOTICE WAS GIVEN FOR PID: 023-668-270 ONLY AND DOES NOT COVER THE OTHER PARCELS LISTED Notation Type: LETTER OF COMFORT ISSUED Notation Class: ADMINISTRATIVE

Initiated: MAY 31, 1990

Ministry Contact: WIENS, JOHN H (MELP)

Notation Roles Notation Participants CITY OF VANCOUVER, PERMITS & LIC. DEPT. (VANCOUVER) RECEIVED BY WIENS, JOHN H (MELP) **ISSUED BY** _ _ _ _ _ _ _ _ _ _ - - - - - - -Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: MAR 26, 1990 Approved: Ministry Contact: WIENS, JOHN H (MELP) Notation Participants Notation Roles NORECOL, DAMES & MOORE INC (VANCOUVER) SUBMITTED BY - - - - - -Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: AUG 09, 1989 Approved: AUG 09, 1989

Ministry Contact: WIENS, JOHN H (MELP)

SITE PARTICIPANTS

Participant: ATWATER, JIM Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: MAR 26, 1990 End Date: Participant: CANTEST LIMITED (VANCOUVER) Role(s): ANALYTICAL LAB Start Date: AUG 02, 1989 End Date: Participant: CITY OF VANCOUVER F2. Si teRegDetailSi telD108Lat49Long123.txt Role(s): PROPERTY OWNER SI TE PROFILE COMPLETOR SI TE PROFILE CONTACT Start Date: JUN 21, 2010 End Date:

BC Online: Site Registry For: PA37337 EBA ENGINEERING CONSULTANTS LTD. As of: DEC 13, 2015 15-12-17 11: 14: 10 Folio: ENV. VENV03059 Page 4 SITE PARTICIPANTS Participant: CITY OF VANCOUVER Role(s): PROPERTY OWNER Start Date: JUL 24, 2007 End Date End Date: - - - - - -Participant: CITY OF VANCOUVER, PERMITS & LIC. DEPT. (VANCOUVER) Role(s): MUNICIPAL/REGIONAL CONTACT PROPERTY OWNER

 Start Date:
 JUL 31, 1989
 End Date:

 Participant:
 ENVIRONMENT CANADA, CONSERVATION PROTECTION (NORTH VANCOUVER) Role(s):
 ENVIRONMENT CANADA CONTACT

 Start Date:
 MAR 26, 1990
 End Date:

 Participant: GAHERTY, WILLIAM Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Dàté: MAY 17, 2007 End Date: Participant: JUNGEN, JOHN R Role(s): MAIN MINISTRY CONTACT Start Date: APR 03, 1990 End Date: APR 12, 2001 Participant: LARSEN, KELLI - -Role(s): MALN MINISTRY CONTACT Start Date: JUN 21, 2010 End Date: Participant: LOCKHART, DAVE Role(s): ALTERNATE MINISTRY CONTACT End Date: Participant: MOODIE CONSULTANTS LTD. (VANCOUVER, B.C.) Role(s): DEVELOPER/ASSOCIATED COMPANY Start Dàté: JUL 31, 1989 End Date: Participant: NORECOL, DAMES & MOORE INC (VANCOUVER) Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: JUL 31, 1989 End Date: Participant: POTTINGER GAHERTY ENVIRONMENTAL CONSULTANTS LTD Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: MAY 14, 2007 End Date: _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - - -Participant: WALTON, DOUG G Role(s): ALTERNATE MINISTRY CONTACT

F2. SiteRegDetailSitelD108Lat49Long123.txt Start Date: JUL 24, 2007 End Date End Date: Participant: WARD, JOHN E H Start Date: JUL 06, 1994 End Date: _ _ _ _ _ _ _ _ _ _ _ _ _ -Participant: WIENS, JOHN H (MELP) Role(s): ALTERNATE MINISTRY CONTACT As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11:14:10 Folio: ENV. VENV03059 Page 5 SITE PARTICIPANTS Start Date: AUG 09, 1989 End Date: JUL 05, 1994 DOCUMENTS Title: Recommendation under Protocol 6 for Contaminated Sites for a Certificate of Compliance Authored: MAY 17, 2007 Submitted: MAY 17, 2007 Parti ci pants Rol e GAHERTY, WILLIAM AUTHOR TITLE: PSI, DSI AND CONFIRMATION OF REMEDIATION, 2910 EAST KENT AVENUE SOUTH, VANCOUVER, BC VANCOUVER, BC Authored: MAY 14, 2007 Submitted: MAY 14, 2007 Parti ci pants Rol e POTTINGER GAHERTY ENVIRONMENTAL CONSULTANTS LTD AUTHOR - - - -Title: RESULTS OF SITE ASSESSMENT - FRASER LANDS KERR COMMERCIAL #1, KERR COMMERCIAL #2 AND TOWN HOUSE #1 Authored: MAR 26, 1990 Submitted: MAR 26, 1990 Rol e Parti ci pants AUTHOR NORECOL, DAMES & MOORE INC (VANCOUVER) Title: RESULTS OF SITE ASSESSMENT - FRASER LANDS PARK AND CHURCH SITES Authored: MAR 26, 1990 Submitted: MAR 26, 1990 Parti ci pants Rol e NORECOL, DAMES & MOORE INC (VANCOUVER) WIENS, JOHN H (MELP) AUTHOR REVI EWER Title: RESULTS OF SITE ASSESSMENT - FRASER LANDS KERR COMMERCIAL #1, KERR COMMERCIAL #2 AND TOWN HOUSE #1 Authored: MAR 26, 1990 Submitted: MAR 26, 1990 Parti ci pants Role WIENS, JOHN H (MELP) **REVI EWER** - - - - - -Title: SITE ASSESSMENT - FRASER LANDS PACKAGE 1 (RISK ASSESSMENT) Authored: AUG 09, 1989 Submitted: AUG Submitted: AUG 15, 1989 Parti ci pants Rol e NORECOL, DAMES & MOORE INC (VANCOUVER) NORECOL, DAMES & MOORE INC (VANCOUVER) MOODIE CONSULTANTS LTD. (VANCOUVER, B.C.) AUTHOR COMMI SSI ONER REVI EWER Page 5

F2. Si teRegDetai | Si tel D108Lat49Long123. txt ASSOCIATED SITES Site id: 400 Date: MAR 13, 1998 Notes: COMMON PID _ _ _ _ _ _ _ _ _ _ _ _ _ SUSPECTED LAND USE Description: LANDFILL - GENERAL USE Notes: POSSIBLE CONTAMINATION SOURCE KERR STREET LANDFILL BC Online: Site Registry For: PA37337 EBA ENGINEERING CONSULTANTS LTD. As of: DEC 13, 2015 15-12-17 11:14:10 Folio: ENV. VENV03059 Page 6 SUSPECTED LAND USE Description: PAINT/LACQUER/VARNISH MANU/FORMULAT/RECYCLE/WHLSLE BULK STOR Notes: POSSIBLE CONTAMINATION SOURCE COLOUR YOUR WORLD Description: SEPTIC TANK PUMPAGE STORAGE OR DISPOSAL Notes: PARCEL DESCRIPTIONS Date Added: MAR 16, 1997 Crown Land PIN#: LTO PID#: 023668229 Crown Land File#: Land Desc: LOT A DISTRICT LOTS 258, 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT PLAN LMP31808 Date Added: APR 10, 1997 LTO PID#: 023668270 Land Desc: LOT 5 DI STRI CT LOTS 258, 2100 AND 6320 GROUP 1 NEW WESTMI NSTER DI STRI CT PLAN LMP31809 Date Added: APR 10, 1997 Crown Land PIN#: Crown Land File#: LTO PID#: 023668288 Land Desc: LOT 6 DI STRI CT LOTS 258, 330, 2100 AND 6320 GROUP 1NEW WESTMI NSTER DI STRI CT PLAN LMP31809 Date Added: APR 10, 1997 LTO PID#: 023668296 Crown Land PIN#: Crown Land File#: Land Desc: LOT 7 DI STRI CT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DI STRI CT PLAN LMP31809 Date Added: APR 10, 1997 Crown Land PIN#: LT0 PID#: 023668300 Crown Land File#: Land Desc: LOT 8 DI STRI CT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DI STRI CT PLAN LMP31809 Date Added: APR 10, 1997 Crown Land PIN#: LTO PID#: 023668318 Crown Land File#: Land Desc: LOT 9 DI STRI CT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMI NSTER DI STRI CT PLAN LMP31809 - - - - - -

Date Added: LTO PID#: Land Desc:	F2. SiteRegDetailSitelD108Lat49Long123.txt MAR 05, 1998 Crown Land PIN#: 024046728 Crown Land File#: LOT 1 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTM DISTRICT PLAN LMP36920	AI NSTER
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 O24347574 STRATA LOT 1 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGET WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW FHER THE
Date Added:	DEC 19, 1998 Crown Land PI N#:	
As of: DEC 1 Folio: ENV.V PARCEL DESCRI	3, 2015 BC Online: Site Registry For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 'ENVO3059 PTIONS	15-12-17 11: 14: 10 Page 7
LTO PID#: Land Desc:	024347582 STRATA LOT 2 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGET WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW THER THE
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 O24347591 STRATA LOT 3 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGET WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW FHER THE
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 O24347604 STRATA LOT 4 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGET WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW FHER THE
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 O24347612 STRATA LOT 5 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGET WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW FHER THE
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 O24347621 STRATA LOT 6 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGET WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW FHER THE
Date Added:	DEC 19, 1998 Crown Land PIN#: Page 7	

	F2. Si teRegDetai Si tel D108Lat49Long123. txt
LTO PID#:	024347639 Crown Land File#:
Land Desc:	STRATA LOT 7 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW
	WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER
	WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE
	INIT ENTITIEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Dato Addod	DEC 10 1009 Crown Land DLN#:
	02427647 Crown Land Filo#:
LIU FID#.	CTOWILLAING THE CT LOTS 220 2100 AND 4220 CDOUD 1 NEW
Land Desc:	STRATA LUT & DISTRICT LUTS 330, ZTUU AND 0320 GROUP I NEW
	WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER
	WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE
	UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added:	DEC 19, 1998 Crown Land PI N#:
LTO PID#:	024347655 Crown Land File#:
Land Desc:	STRATA LOT 9 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 14: 10 Folio: ENV. VENV03059 Page 8 PARCEL DESCRIPTIONS WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 Date Added: DEC 19, 1998 Crown Land PIN#: LT0 PID#: 024347663 Crown Land File#: STRATA LOT 10 DI STRI CT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMI NSTER DI STRI CT LEASEHOLD STRATA PLAN LMS3758 TOGETHER Land Desc: GROUP 1 NEW WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 - - - - - - - - - - - - -Date Added: DEC 19, 1998 Crown Land PIN#: 024347671 LTO PID#: Crown Land File#: STRATA LOT 11 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW Land Desc: WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 - - - -Date Added: DEC 19, 1998 Crown Land PIN#: 024347680 LTO PID#: Crown Land File#: STRATA LOT 12 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW Land Desc: WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 Date Added: DEC 19, 1998 Crown Land PIN#: 024347698 LTO PID#: Crown Land File#: STRATA LOT 13 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW Land Desc: WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 - - - -

	F2. SiteRegDetailSitelD	108Lat49Long123.txt
Date Added:	DEC 19, 1998	Crown Land PI N#:
LIO PID#:	024347701	Crown Land File#:
Land Desc:	SIRAIA LOI 14 DISTRICI LOIS 3	30, 2100 AND 6320 GROUP 1 NEW
	WESTMINSTER DISTRICT LEASEHOL	D STRATA PLAN LMS3758 TOGETHER
	WITH AN INTEREST IN THE COMMON	PROPERTY IN PROPORTION TO THE
	UNIT ENTITLEMENT OF THE STRATA	LOT AS SHOWN ON FORM 1
Doto Addod		
	DEC 19, 1998	Crown Land PIN#:
LIU PID#:		
Land Desc:	SIRAIA LUI 15 DISIRICI LUIS 3	30, ZIUU AND 6320 GRUUP I NEW
	WESTMINSTER DISTRICT LEASEHUL	D SIRAIA PLAN LMS3/58 IUGEIHER
	WITH AN INTEREST IN THE COMMON	PROPERTY IN PROPORTION TO THE
	UNIT ENTITLEMENT OF THE STRATA	LUT AS SHOWN ON FORM I
Data Addad	DEC 10 1009	Crown Land DLN#:
	02/2/7728	Crown Land Filo#:
LIU FID#.	STDATA LAT 16 DISTDICT LATS 2	20 2100 AND 6220 CDOUD 1 NEW
Lanu Desc.	WESTMINISTED DISTRICT LOTS S	D STDATA DIAN IMS2750 TOCETUED
		DODEDTV IN DOODODTION TO THE

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 14: 10 PARCEL DESCRIPTIONS Page 9

UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1

Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347736 STRATA LOT 17 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998Crown Land PIN#: Crown Land File#:024347744Crown Land File#: STRATA LOT 18 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347752 STRATA LOT 19 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347761 STRATA LOT 20 DI STRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DI STRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 Page 9

	F2. Si teRegDetai I Si tel D108Lat49Long123. txt
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 O24347779 STRATA LOT 21 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347787 STRATA LOT 22 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347795 STRATA LOT 23 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 14: 10 PARCEL DESCRIPTIONS PARCEL

Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347809 STRATA LOT 24 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C UNIT ENTITLEMENT OF THE S	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER COMMON PROPERTY IN PROPORTION TO THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347817 STRATA LOT 25 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C UNIT ENTITLEMENT OF THE S	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER OMMON PROPERTY IN PROPORTION TO THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347825 STRATA LOT 26 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C UNIT ENTITLEMENT OF THE S	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER OMMON PROPERTY IN PROPORTION TO THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347841 STRATA LOT 27 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER OMMON PROPERTY IN PROPORTION TO THE Page 10

	F2. SiteRegDetailS UNIT ENTITLEMENT OF THE S	itelD108Lat49Long123.txt TRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347850 STRATA LOT 28 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C UNIT ENTITLEMENT OF THE S	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER OMMON PROPERTY IN PROPORTION TO THE TRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347868 STRATA LOT 29 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C UNIT ENTITLEMENT OF THE S	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER OMMON PROPERTY IN PROPORTION TO THE TRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347876 STRATA LOT 30 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C UNIT ENTITLEMENT OF THE S	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER OMMON PROPERTY IN PROPORTION TO THE TRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#:	DEC 19, 1998 024347884	Crown Land PIN#: Crown Land File#:

As of: DEC 13, 2015		BC Onlin	e: Site Registry			15-12-17
I	For:	PA37337	EBA ENGINĒERING	CONSULTANTS	LTD.	11: 14: 10
Folio: ENV.VENV03059						Page 11
PARCEL DESCRIPTIONS						C

Land Desc:	STRATA LOT 31 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C UNIT ENTITLEMENT OF THE S	OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER COMMON PROPERTY IN PROPORTION TO THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347892 STRATA LOT 32 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C UNIT ENTITLEMENT OF THE S	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER COMMON PROPERTY IN PROPORTION TO THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347906 STRATA LOT 33 DISTRICT L WESTMINSTER DISTRICT LEA WITH AN INTEREST IN THE C UNIT ENTITLEMENT OF THE S	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER COMMON PROPERTY IN PROPORTION TO THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347914 STRATA LOT 34 DISTRICT L WESTMINSTER DISTRICT LEA	Crown Land PIN#: Crown Land File#: OTS 330, 2100 AND 6320 GROUP 1 NEW SEHOLD STRATA PLAN LMS3758 TOGETHER Page 11

	F2. SiteRegDetailSitelD108Lat49Long123.txt WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998 024347922 STRATA LOT 35 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347931 STRATA LOT 36 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998Crown Land PIN#: Crown Land File#:024347949Crown Land File#: STRATA LOT 37 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998 024347957 STRATA LOT 38 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 14: 10 PARCEL DESCRIPTIONS PAge 12

WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1

Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347965 STRATA LOT 39 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347973 STRATA LOT 40 DI STRI CT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DI STRI CT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WI TH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347981 STRATA LOT 41 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW Page 12

	F2. SiteRegDetailSitelD108Lat49Long123.txt WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGE WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	THER THE
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024347990 STRATA LOT 42 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGET WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW THER THE
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348007 STRATA LOT 43 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGE WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW THER THE
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348015 STRATA LOT 44 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGET WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW THER THE
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 Crown Land PIN#: 024348023 STRATA LOT 45 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGE WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1	NEW THER THE
As of: DEC 1 Folio: ENV.V PARCEL DESCRI	3, 2015 BC Online: Site Registry For: PA37337 EBA ENGINEERING CONSULTANTS LTD. ENV03059 PTIONS	15-12-17 11: 14: 10 Page 13

Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348031 STRATA LOT 46 WESTMINSTER DIS WITH AN INTERES UNIT ENTITLEMEN	Crown Land PIN#: Crown Land File#: DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW TRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER T IN THE COMMON PROPERTY IN PROPORTION TO THE T OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348040 STRATA LOT 47 WESTMINSTER DIS WITH AN INTERES UNIT ENTITLEMEN	Crown Land PIN#: Crown Land File#: DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW TRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER T IN THE COMMON PROPERTY IN PROPORTION TO THE T OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#:	DEC 19, 1998 024348058	Crown Land PIN#: Crown Land File#: Page 13

Land Desc:	F2. SiteRegDetailSitel STRATA LOT 48 DISTRICT LOTS WESTMINSTER DISTRICT LEASEHO WITH AN INTEREST IN THE COMMO UNIT ENTITLEMENT OF THE STRAT	D108Lat49Long123.txt 330, 2100 AND 6320 GROUP 1 NEW LD STRATA PLAN LMS3758 TOGETHER N PROPERTY IN PROPORTION TO THE A LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348066 STRATA LOT 49 DISTRICT LOTS WESTMINSTER DISTRICT LEASEHO WITH AN INTEREST IN THE COMMO UNIT ENTITLEMENT OF THE STRAT	Crown Land PIN#: Crown Land FIIe#: 330, 2100 AND 6320 GROUP 1 NEW LD STRATA PLAN LMS3758 TOGETHER N PROPERTY IN PROPORTION TO THE A LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348074 STRATA LOT 50 DISTRICT LOTS WESTMINSTER DISTRICT LEASEHO WITH AN INTEREST IN THE COMMO UNIT ENTITLEMENT OF THE STRAT	Crown Land PIN#: Crown Land FIIe#: 330, 2100 AND 6320 GROUP 1 NEW LD STRATA PLAN LMS3758 TOGETHER N PROPERTY IN PROPORTION TO THE A LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348082 STRATA LOT 51 DISTRICT LOTS WESTMINSTER DISTRICT LEASEHO WITH AN INTEREST IN THE COMMO UNIT ENTITLEMENT OF THE STRAT	Crown Land PIN#: Crown Land File#: 330, 2100 AND 6320 GROUP 1 NEW LD STRATA PLAN LMS3758 TOGETHER N PROPERTY IN PROPORTION TO THE A LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348091 STRATA LOT 52 DISTRICT LOTS WESTMINSTER DISTRICT LEASEHO WITH AN INTEREST IN THE COMMO UNIT ENTITLEMENT OF THE STRAT	Crown Land PIN#: Crown Land File#: 330, 2100 AND 6320 GROUP 1 NEW LD STRATA PLAN LMS3758 TOGETHER N PROPERTY IN PROPORTION TO THE A LOT AS SHOWN ON FORM 1
Date Added:	DEC 19, 1998	Crown Land PIN#:

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 14: 10 PARCEL DESCRIPTIONS PAGE 14

LTO PID#: Land Desc:	024348104 STRATA LOT 53 DISTRICT LOTS 3 WESTMINSTER DISTRICT LEASEHOL WITH AN INTEREST IN THE COMMON UNIT ENTITLEMENT OF THE STRATA	Crown Land File#: 30, 2100 AND 6320 GROUP 1 NEW D STRATA PLAN LMS3758 TOGETHER PROPERTY IN PROPORTION TO THE LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348112 STRATA LOT 54 DISTRICT LOTS 3 WESTMINSTER DISTRICT LEASEHOL WITH AN INTEREST IN THE COMMON UNIT ENTITLEMENT OF THE STRATA	Crown Land PIN#: Crown Land File#: 30, 2100 AND 6320 GROUP 1 NEW D STRATA PLAN LMS3758 TOGETHER PROPERTY IN PROPORTION TO THE LOT AS SHOWN ON FORM 1
Date Added:	DEC 19, 1998	Crown Land PIN#:

LTO PID#: Land Desc:	F2. SiteRegDetailSitelD108Lat49Long123.txt O24348121 Crown Land File#: STRATA LOT 55 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998Crown Land PIN#:024348139Crown Land File#:STRATA LOT 56DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEWWESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHERWITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THEUNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998 024348147 STRATA LOT 57 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998 024348155 STRATA LOT 58 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998Crown Land PIN#: Crown Land File#:024348163Crown Land File#: STRATA LOT 59 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348171 STRATA LOT 60 DI STRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW

As of: DEC 13, 2015 BC Online: Site Registry For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 15-12-17 11: 14: 10 Folio: ENV. VENV03059 Page 15 PARCEL DESCRIPTIONS WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
 Date Added:
 DEC 19, 1998
 Ci

 LTO PID#:
 024348180
 Crosses
 - - - - - -Crown Land PIN#: Crown Land File#: STRATA LOT 61 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 Land Desc: - - - -- - -

Date Added: LTO PID#: Land Desc:	F2. Si teRegDetailSi telD108Lat49Long123.txt DEC 19, 1998 Crown Land PIN#: 024348198 Crown Land File#: STRATA LOT 62 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348201 STRATA LOT 63 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348210 STRATA LOT 64 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348228 STRATA LOT 65 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348236 STRATA LOT 66 DI STRI CT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DI STRI CT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WI TH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348244 STRATA LOT 67 DI STRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DI STRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 14: 10 PARCEL DESCRIPTIONS PARCEL

UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 Date Added: DEC 19, 1998 Crown Land PIN#: LTO PID#: 024348252 Crown Land File#: Land Desc: STRATA LOT 68 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 Page 16

	F2. Si teRegDetai I Si tel D108Lat49Long123. txt
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 O24348261 STRATA LOT 69 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PID#: Land Desc:	DEC 19, 1998 024348279 STRATA LOT 70 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WI TH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998 O24348287 STRATA LOT 71 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998 O24348295 STRATA LOT 72 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998 O24348309 STRATA LOT 73 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1
Date Added: LTO PI D#: Land Desc:	DEC 19, 1998 024348317 STRATA LOT 74 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1

As of: DEC 13, 2015 BC Online: Site Registry 15-12-17 For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 11: 14: 10 PARCEL DESCRIPTIONS PAGE 17

Date Added:DEC 19, 1998Crown Land PIN#:LTO PID#:024348325Crown Land File#:Land Desc:STRATA LOT 75 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW
WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER
WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE
Page 17

F2. Si teRegDetai | Si tel D108Lat49Long123. txt UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 Date Added: DEC 19, 1998 LTO PID#: 024348333 Crown Land PIN#: Crown Land File#: STRATA LOT 76 DI STRI CT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMI NSTER DI STRI CT LEASEHOLD STRATA PLAN LMS3758 TOGETHER Land Desc: WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 _ _ _ _ _ _ _ _ Date Added: DEC 19, 1998 Crown Land PIN#: LT0 PID#: 024348341 Crown Land File#: STRATA LOT 77 DISTRICT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMINSTER DISTRICT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 Land Desc: - - - - - - - - - -Date Added: DEC 19, 1998 Crown Land PIN#: LTO PID#: 024348350 Crown Land File#: Land Desc: STRATA LOT 78 DI STRI CT LOTS 330, 2100 AND 6320 GROUP 1 NEW WESTMI NSTER DI STRI CT LEASEHOLD STRATA PLAN LMS3758 TOGETHER WITH AN INTEREST IN THE COMMON PROPERTY IN PROPORTION TO THE UNIT ENTITLEMENT OF THE STRATA LOT AS SHOWN ON FORM 1 CURRENT SITE PROFILE INFORMATION (Sec. III to X) Site Profile Completion Date: JUN 07, 2010 Local Authority Received: JUN 11, 2010 Ministry Regional Manager Received: JUN 21, 2010 Decision: JUL 21, 2010 Decision: INVESTIGATION NOT REQUIRED Site Registrar Recei ved: Entry Date: COMMERCIAL AND INDUSTRIAL PURPOSES OR ACTIVITIES ON SITE 111 Schedul e 2 Reference Description PAINT/LACQUER/VARNISH MANU/FORMULAT/RECYCLE/WHLSLE BULK STOR A8 AREAS OF POTENTIAL CONCERN Petroleum, solvent or other polluting substance spills to the environment greater than 100 litres?..... Residue left after removal of piled materials such as chemicals, coal, ore, smelter slag, air quality control system baghouse dust?......NO Discarded barrels, drums or tanks?......NO Contamination resulting from migration of substances from other properties?.....NO

As of: DEC 13, 2015 BC Online: Site Registry For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 15-12-17 Tolio: ENV. VENV03059 Page 18

FILL MATERIALS

Fill dirt, soil, gravel, sand or like materials from a contaminated site or from a source used for any of the activiities listed under Schedule

F2. Si teRegDetai Si tel D108Lat49Long123. txt
2?NO Discarded or waste granular materials such as sand blasting grit, asphalt paving or roofing material, spent foundry casting sands, mine ore, waste rock or float?
Dredged sediments, or sediments and debris materials originating from locations adjacent to foreshore industrial activities, or municipal sanitary or stormwater discharges?
<pre>WASTE DISPOSAL (QUESTIONS AS OF JANUARY 1 2009) Materials such as household garbage, mixed municipal refuse, or demolition debris?</pre>
TANKS OR CONTAINERS USED OR STORED, OTHER THAN TANKS USED FOR RESIDENTIAL HEATING FUEL Underground fuel or chemical storage tanks other than storage tanks for compressed gases?
 HAZARDOUS WASTES OR HAZARDOUS SUBSTANCES PCB-containing electrical transformers or capacitors either at grade, attached above ground to poles, located within buildings, or stored?NO Waste asbestos or asbestos containing materials such as pipe wrapping, blown-in insulation or panelling buried?NO Paints, solvents, mineral spirits or waste pest control products or pest control product containers stored in volumes greater than 205 litres?NO
LEGAL OR REGULATORY ACTIONS OR CONSTRAINTS Government orders or other notifications pertaining to environmental conditions or quality of soil, water, groundwater or other environmental media?

As of: DEC 13, 2015 BC Online: Site Registry For: PA37337 EBA ENGINEERING CONSULTANTS LTD. 15-12-17 Folio: ENV. VENV03059 PA37337 EBA ENGINEERING CONSULTANTS LTD. Page 19 F2. Si teRegDetai | Si tel D108Lat49Long123.txt X ADDI TI ONAL COMMENTS AND EXPLANATI ONS

End of Detail Report

Phase II Environmental Site Assessment 3010 East Kent Avenue South Vancouver, British Columbia

PRESENTED TO City of Vancouver

MARCH 2016 ISSUED FOR USE FILE: 704-ENV.VENV03059-01

> Tetra Tech EBA Inc. Suite 1000 – 10th Floor, 885 Dunsmuir Street Vancouver, BC V6C 1N5 CANADA Tel 604.685.0275 Fax 604.684.6241
This page intentionally left blank.

EXECUTIVE SUMMARY

Tetra Tech EBA Inc. (Tetra Tech EBA) was retained by Ms. Amber Bongiovanni, of the City of Vancouver, to conduct a Phase II Environmental Site Assessment (ESA) on a City owned property located at 3010 East Kent Avenue South, in Vancouver, BC (herein referred to as "Property"). This Phase II ESA is being sought by the client for purposes related to potential future redevelopment of the Property.

The Phase II ESA follows a Phase I ESA that was completed on the property in January 2016 by Tetra Tech EBA. During the Phase I ESA, three Areas of Potential Environmental Concern (APECs) were identified at the Property and two APECs were discovered in the surrounding area. The objective of the Phase II ESA was to determine whether Potential Contaminants of Concern (PCOCs) associated with APECs, 1 to 5, as listed below, were present in soil or groundwater at concentrations exceeding the Drinking Water (DW), aguatic water for fresh water & marine standards (AWfw and AWmw), and potential future residential land (RL) standards as detailed in the BC Contaminated Sites Regulation.

APEC Number	Description	Potential Contaminants Of Concern (PCOC)			
1	Former Paint Factory located on the Property from approximately 1971 to 1986.	BTEX, VPHs, VOCs, LEPH, HEPH, metals			
2	Fill from unknown source on the Property.	LEPH/HEPH, PAH, metals			
3	Fill from historic stream potentially on the Property.	LEPH/HEPH/PAH, metals,			
4	Various industrial facilities, including construction facilities, a sawmill, concrete plant, and trucking companies located at 2922 – East Kent Avenue South.	LEPH, HEPH, PAH, VOCs, metals			
5	Ocean Concrete Plant and Asphalt Plant located adjacent to the east Property boundary at 8605 – East Kent Avenue South.				
Notes: B	BTEX = Benzene, Toluene, Ethylbenzene, Xylene. LEPH/HEPH = Light/Heavy Extractable Petroleum Hydrocarbons.				

Table E1: **Areas of Potential Environmental Concern**

PAH = Polycyclic Aromatic Hydrocarbons. VOCs = Volatile Organic Compounds

VPH = Volatile Petroleum Hydrocarbons.

PCOC = Potential Contaminants of Concern

During the Phase II ESA, A total of four boreholes, each completed as groundwater monitoring wells, and four testpits for environmental purposes were advanced across the Property on February 11 and 12, 2016. Soil and groundwater samples were collected from the borings, testpits, and groundwater monitoring wells and submitted for analyses of the PCOCs. The investigation was done in conjunction with a geotechnical investigation which advanced additional test pits on the Property. The overall results of the Phase II ESA are summarized in the following table.

	Identified COCs Exceeding CSR standards					
	Soil	Groundwater				
	 Chromium exceeds the CSR RL standard at BH16-01 (1.2 m) 	 Benzo(a)pyrene exceeds at CSR DW standard at MW16-02 				
APEC 1 Former Paint Factory located on	 HEPH exceeds the CSR RL standard at BH16-02 (5.2 m) 	 Benzo(a)pyrene, pyrene, and arsenic exceed CSR AW and DW standards at MW16-01 				
the Property from approximately 1971 to 1986.	 Antimony, arsenic, copper, molybdenum, and zinc exceed the CSR RL standards at TP16- 13 (2.0 m) Metal and HEPH exceedances at TP16-13 are suspected to be associated with APEC 2 	Benzo(a)pyrene, pyrene, and arsenic exceedances are most likely from the fill material used during the infilling of the former river channel (APEC 2)				
APEC 2	 HEPH exceeds the CSR RL standard at BH16-02 (5.2 m) Antimony graphic connect matched arum and 					
River channel fill from unknown source on the	zinc exceed the CSR RL standards at TP16- 13 (2.0 m)	 Benzo(a)pyrene, pyrene, and antimony exceed at MW16-03 				
Property.	 Antimony, arsenic, copper, molybdenum, and zinc exceed the CSR RL standard at BH16- 03. (1.1 m) 					
APEC 3 Fill from historic stream potentially on the Property.	 Soil samples assessed meet the CSR RL standards at TP16-05 (0.9 m) and BH16-04 (1.2 m) There is no suggested evidence that there are environmental impacts 	 Groundwater samples obtained were below laboratory detection limit and/or well below CSR AW and DW standards 				
APEC 4 Various industrial facilities, including	 Soil samples assessed meet the CSR RL a standards at TP16-06 (1.2 m) Chromium exceeds the CSR RL standard at 	 Benzo(a)pyrene, pyrene, and arsenic exceed CSR AW and DW standards at MW16-01 				
construction facilities, a sawmill, concrete plant, and trucking companies	BH16-01 (1.2 m) The chromium exceedance is believed to be	Benzo(a)pyrene, pyrene, and arsenic exceedances are most likely from the fill material used during the infilling of the former river channel (APEC 2)				
located to the west	Arsenic exceeds the CSR RL standard at					
APEC 5	 TP16-07 (0.5 m) Antimony, arsenic, copper, molybdenum, and zinc exceeded CSR RL standards at BH16-03 (1.1 m) 	 Benzo(a)pyrene, pyrene, and antimony exceed at MW16-03 				
Ocean Concrete Plant and Asphalt Plant located	All Metal exceedances at BH/MW16-03 are	Benzo(a)pyrene, pyrene, and antimony exceedances are most likely from the fill material used during the infilling of the former				
adjacent to the east	suspected to be associated with APEC 2 as they are the same parameter grouping as was identified in testpit TP16-13 and taken from similar fill material	river channel (APEC 2) – see comment to left under soil.				
Notes: APEC – Area of Potential Environmental Concern RL – Residential Land Use Standard CSR – Contaminated Sites Regulation AWmw – Marine Water Aquatic Life Standard						

Table E2: **Phase II Environmental Site Assessment Findings**

AWfw – Freshwater Aquatic Life Standard

There were no concentrations of volatile constituents that were elevated so no soil vapour modelling was conducted.

Conclusion and Recommendations

Constituents with concentrations exceeding the applicable CSR Standards are present on the Property. Three APECs (1, 2, and 5) are carried forward as Areas of Environmental Concern and further investigation is recommended to delineate the lateral and vertical extent of the constituents that exceed the applicable standards.

TABLE OF CONTENTS

EXE	CUTIV	/E SUMMARY	I
1.0	INTR		1
	1.1	Scope of Work	1
2.0	SITE	DESCRIPTION	2
	2.1	Location and Current Legal Description	2
	2.2	Current Property Facilities	2
	2.3	Natural Setting	2
		2.3.1 Geological Information	2
		2.3.2 Topography and Hydrogeology	2
		2.3.3 Streams and Waterbodies	3
	2.4	Historic Streams	3
3.0	PRE	VIOUS ENVIRONMENTAL INVESTIGATIONS	3
4.0	SOIL	AND GROUNDWATER ASSESSMENT STANDARDS	4
	4.1	Soil Assessment Standards	4
	4.2	Groundwater Assessment Standards	5
5.0	INVE	STIGATION METHODOLOGY	5
	5.1	Phase II ESA Test Location Rationale	5
	5.2	Health and Safety	6
	5.3	Utility Locates	7
	5.4	Test Pitting and Borehole Completion	7
	5.5	Field Screening	8
	5.6	Soil Sampling	8
	5.7	Groundwater Monitoring Well Installation	8
	5.8	Monitoring Well Development, Purging and Sampling	8
	5.9	Quality Assurance / Quality Control Program	9
		5.9.1 Tetra Tech EBA	9
		5.9.2 AGAT Laboratories	10
6.0	FIND	DINGS	10
	6.1	Surficial Geology	10
	6.2	Groundwater Elevations and Flow Direction	11
	6.3	Soil Results	12
	6.4	Groundwater Results	12
	6.5	Soil Vapour	13
	6.6	Quality Assurance and Quality Control Results	13
7.0	DISC	CUSSION	14
	7.1	APEC 1: Former Paint Factory located on the Property from approximately 1971 to 1986	14
		7.1.1 Soil	14
		7.1.2 Groundwater	14

	7.2	APEC 2: Fill from unknown source on the Property	15
		7.2.1 Soil	15
		7.2.2 Groundwater	15
	7.3	APEC 3: Fill from historic stream potentially crossing the Property	16
		7.3.1 Soil	16
		7.3.2 Groundwater	16
	7.4	APEC 4: Various industrial facilities, including construction facilities, a sawmill, concrete plant, and	
		trucking companies located at 2922 – East Kent Avenue	16
		7.4.1 Soil	16
		7.4.2 Groundwater	16
	7.5	APEC 5: Ocean Concrete Plant and Asphalt Plant located adjacent to the east Property boundary a	at
		8605 – East Kent Avenue South	17
		7.5.1 Soil	17
		7.5.2 Groundwater	17
	7.6	Quality Assurance / Quality Control	18
8.0	CON	CLUSIONS AND RECOMMENDATIONS	18
	8.1	Recommendations	19
9.0	CLOS	SURE	20
REFE		CES	21

LIST OF TABLES IN TEXT

Table E1:	Areas of Potential Environmental Concern	i
Table E2:	Phase II Environmental Site Assessment Findings	ii
Table 2-1:	Parcel ID, Civic Address, and Municipal Information	2
Table 3-0:	Property – Areas of Potential Environmental Concern	
Table 3-1:	Surrounding Area – Areas of Potential Environmental Concern	4
Table 5-1:	Phase II ESA Sampling Locations	6
Table 6-3:	Soil Analytical Exceedances (µg/g)	12
Table 6-4:	Groundwater Analytical Exceedances (µg/L)	13
Table 6-6:	Quality Assurance and Quality Control Results	
Table 8-0:	Phase II ESA Findings	

APPENDIX SECTIONS

TABLES

Table 1a	Summary of Monitoring Well Completion Details
Table 1b	Groundwater Monitoring Data
Table 2a	Soil Analytical Results - Hydrocarbons
Table 2b	Soil Analytical Results – Metals
Table 2c	Soil Analytical Results – Volatile Organic Compounds

- Table 3aWater Analytical Results Hydrocarbons
- Table 3b Water Analytical Results Metals
- Table 3cWater Analytical Results Volatile Organic Compounds
- Table 4
 Soil Quality Assurance / Quality Control Analytical Results
- Table 5
 Groundwater Quality Assurance / Quality Control Analytical Results

FIGURES

- Figure 1 Property Location Plan
- Figure 2 Sampling Locations and Areas of Potential Environmental Concern
- Figure 3 Soil Analytical Results
- Figure 4 Groundwater Analytical Results
- Figure 5 Groundwater Elevation Contours February 18, 2016

APPENDICES

- Appendix A Tetra Tech EBA's General Conditions
- Appendix B Borehole Logs
- Appendix C AGAT Laboratory Certificates

LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the City of Vancouver and their agents. Tetra Tech EBA Inc. (Tetra Tech EBA) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the City of Vancouver, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this report is subject to the terms and conditions stated in Tetra Tech EBA's Services Agreement. Tetra Tech EBA's General Conditions are provided in Appendix A of this report.

1.0 INTRODUCTION

Tetra Tech EBA Inc. (Tetra Tech EBA) was retained by Ms. Amber Bongiovanni of the City of Vancouver (herein referred to as "the Client") to conduct a Phase II Environmental Site Assessment (ESA) at 3010 East Kent Avenue South, Vancouver, BC (herein referred to as the "Property"). This Phase II ESA is being conducted for purposes relating to the potential future redevelopment of the Property.

The Phase II ESA follows a Phase I ESA that was completed on the property in January 2016 by Tetra Tech EBA. During the Phase I ESA, three Areas of Potential Environmental Concern (APECs) were identified at the Property and two APECs were discovered in the surrounding area. Based on the Phase I ESA recommendations, a Phase II ESA was initiated. A summary of activities from the previous investigation is provided in Section 3.0 of this report.

The objective of the Phase II ESA was to assess soil and groundwater quality at the site for the presence/absence of the PCOCs associated with APECs 1 to 5. Although previously recommended, soil vapour was not assessed as part of this Phase II ESA.

Ms. Amber Bongiovanni of the City of Vancouver provided Tetra Tech EBA with written authorization to proceed with the Phase II ESA in February 2016.

1.1 Scope of Work

The scope of work for the Phase II ESA was developed in consultation with the Client and included the following main tasks:

- Reviewing reports from previous environmental investigations that were completed on the Property and surrounding area;
- Preparing a sampling location plan to identify potential impacted areas based on the APECs;
- Completing a project-specific sampling and analytical plan, and Quality Assurance / Quality Control (QA/QC) project plan, prior to the field investigation;
- Completing a site-specific health and safety plan to be implemented throughout the entire field investigation;
- Retaining Western Utility Locates of Vancouver, BC to locate any underground utilities on the Property, especially within the areas of the proposed test locations;
- To build a Phase II ESA work plan around a coinciding Preliminary Geotechnical Assessment
- Retaining Backhoes Unlimited Ltd. (Backhoes Unlimited) of Langley, BC to dig four environmental test pits and five geotechnical test pits;
- Retaining Omega Drilling Ltd. (Omega) of Pitt Meadows, BC to drill four boreholes using a track-mounted drill rig and install a monitoring well in each;
- Collecting soil samples from each test pit/borehole and submitting select samples AGAT Laboratories (AGAT) of Burnaby, BC for laboratory analysis of Potential Contaminants of Concern (PCOCs) associated with the APECs;
- Measuring groundwater levels, developing, and purging of the four monitoring wells;
- Collecting groundwater samples from each monitoring well and submitting the samples to AGAT for laboratory analysis of the PCOCs;
- Comparing the soil and groundwater analytical results to the applicable standards, as established by the Contaminated Sites Regulation (CSR) of the Environmental Management Act of British Columbia; and

Preparing this report summarizing Tetra Tech EBA's findings, conclusions, and recommendations.

2.0 SITE DESCRIPTION

2.1 Location and Current Legal Description

The Property is located in the City of Vancouver, BC and consists of one legal lot. A site location plan is shown on Figure 1. The Property, APECs, and sampling locations are shown in Figure 2.

The legal description for the Property is:

Lot 7 District Lots 330, 2100 and 6320 Group 1 New Westminster District Plan LMP31809

The Parcel Identifier (PID), civic address, zoning, official community plan, and coordinates of the Property are presented in the following table:

Table 2-1: Parcel ID, Civic Address, and Municipal Information

Parcel ID Civic Address		Municipal Zoning	CD Guidelines	Latitude	Longitude
023-668-296	3010 – East Kent Avenue South	CD-1 (247)	CD-1 (247) By- law No. 6533	49º 12' 21.6" N	123º 02' 40.3" W

Notes: CD-1 (247) indicates the Property is zoned as Comprehensive Development for medium density residential development with some commercial use.

2.2 Current Property Facilities

At the time of the Phase II ESA, which took place in February 2016, the Property was used as a recreational field for local residents. There were no buildings on the Property and the entire Property was covered with grass.

2.3 Natural Setting

2.3.1 Geological Information

The Geological Survey of Canada Map 1486A indicated that the surficial geology in the area of the Property consisted of Quaternary Fraser River Sediments, which are made up of overbank silty to silt clay loam normally less than 2 m thick. These sediments may overlie 15 m or more of deltaic or distributary channel fill, interbedded fine to medium sand and minor silt beds possibly containing organic or fossiliferous material.

2.3.2 Topography and Hydrogeology

The topography of the Property is relatively flat, however, the Property slopes very slightly southwards toward the Fraser River, which is located approximately 50 m south of the Property. Topography to the north of the Property slopes steeply southward towards the Fraser River.

The local groundwater flow is inferred to flow south towards the Fraser River. However, shallow groundwater in the vicinity of the river and the Property may be influenced by fluctuations in river level, as well as river flow rate and direction.

2.3.3 Streams and Waterbodies

Activities on a site have the potential to contaminate the sediments of waterbodies that cross through or are adjacent to the Property. Potential contaminants may be transported to the waterbodies by means of overland surface flow and groundwater infiltration. In addition, sites located upstream of the Property have the potential to contaminate the waterbodies passing through or adjacent to the Property, which could potentially result in contamination of the Property's soil, groundwater, and/or sediment.

In this case, the Fraser River flowed to the west and passed within 50 m of the south Property boundary. No surface water bodies were observed on the Property.

2.4 Historic Streams

Before establishment of the Lower Mainland cities, a little more than a century ago, the Lower Mainland was a forested wetland, criss-crossed by streams. Today many of these waterways have been buried under fill as the cities have expanded. It was common for imported fill to consist of refuse, debris and industrial waste, which can present an environmental risk to a Property with any historic streams.

A copy of the Department of Fisheries and Oceans Canada's Lost Streams Map was referenced for historic streams on or in the vicinity of the Property. One historic stream was identified as potentially passing through the Property.

3.0 PREVIOUS ENVIRONMENTAL INVESTIGATIONS

In January 2016, Tetra Tech EBA completed a Phase I ESA for the Property. Based on the findings described in the Phase I ESA, three APECs were identified on the Property. The APECs and their associated PCOCs, are summarized in the following table.

APEC Number	Description	Rationale	PCOCs		
1	Former Paint Factory located on the Property from approximately 1971 to 1986.	ormer Paint ory located on Property from oximately 1971 to 1986. A paint factory was located on the Property from approximately 1971 to 1986, and evidence from the aerial photographs may indicate that the factory was present prior to 1971. Aerial photographs also showed several items, including several drums, demolition debris, and some unidentifiable material to be present on the Property after the removal of the factory.			
2	Fill from unknown source on the Property.	The south portion of the Property consists of fill that was put into the Fraser River to close the channel between the historic Rowling Island and the north shore of the Fraser River. The fill first appeared in the 1954 aerial photograph. The fill was obtained from an unknown source, however, it was common for imported fill in that time to consist of refuse, debris and industrial waste, which can present an environmental risk to a Property.	LEPH/HEPH, PAH, metals		
3	Fill from historic stream potentially on the Property.	A review of the Department of Fisheries and Ocean Canada's Lost Streams Map identified one historic stream as potentially passing through the Property. It was common for imported fill to consist of refuse, debris and industrial waste, which can present an environmental risk to a Property with any historic streams.	LEPH/HEPH/PAH, metals,		

Table 3-0: Property – Areas of Potential Environmental Concern

Notes: BTEX = Benzene, Toluene, Ethylbenzene, Xylene. LEPH/HEPH = Light/Heavy Extractable Petroleum Hydrocarbons. PAH = Polycyclic Aromatic Hydrocarbons. VPH = Volatile Petroleum Hydrocarbons, VOCs = Volatile Organic Compounds Potential Contaminants of Concern (PCOCs)

In addition, two APECs were identified on neighbouring properties. These are outlined in the following table.

APEC Number	Description	Rationale	PCOCs
4	Various industrial facilities, including constructionHistorical land uses at 2922 East Kent Avenue South (approximately 85 m west of the Property): 		LEPH, HEPH, PAH, VOCs, metals
5	Ocean Concrete Plant and Asphalt Plant located adjacent to the east Property boundary at 8605 – East Kent Avenue South.	An asphalt manufacturing plant and Ocean's Concrete plant were listed in the city directories at 8605 – Kerr Street from 1971 to 1981, although a review of the aerial photographs suggests that at least one of these facilities may have existed until circa 1986. Though these facilities were located cross-gradient to the Property, it is Tetra Tech EBA's professional opinion that the above historical activities on the site had potential to environmentally impact the Property because of their close proximity to the Property.	LEPH/HEPH/PAH, metals

Table 3-1: Surrounding Area – Areas of Potential Environmental Concern

Notes: BTEX = Benzene, Toluene, Ethylbenzene, Xylene. LEPH/HEPH = Light/Heavy Extractable Petroleum Hydrocarbons. PAH = Polycyclic Aromatic Hydrocarbons. VPH = Volatile Petroleum Hydrocarbons, VOCs = Volatile Organic Compounds

Based on the results of the Phase I ESA, Tetra Tech EBA recommended that a subsurface investigation in the form of a Phase II ESA, be carried out on the Property to investigate potential impacts to soil, groundwater, and soil vapour.

4.0 SOIL AND GROUNDWATER ASSESSMENT STANDARDS

Soil and groundwater are regulated within British Columbia's *Environmental Management Act* (EMA). Analytical results were compared to the numerical standards stipulated in the CSR (BC Reg. 375/96 including amendments up to BC Reg. 4/2014, January 31, 2014).

4.1 Soil Assessment Standards

To assess soil contamination, the British Columbia Ministry of Environment (MOE) has developed numerical standards for chemical parameters. These standards are based on land use and are provided in the CSR. Schedules 4, 5, and 10 provide generic and matrix numerical standards for the assessment and remediation of soil. Generic standards depend solely on land use, while matrix standards are based on land use and a number of site-specific factors, such as the use of groundwater in the area, if any.

The current zoning at the Property is CD-1 (247) which allows for residential development with some commercial use. Therefore, the residential (RL) land use standard was considered applicable to the Property. The potential future use of the Property as a daycare would mean that the RL standard is applicable.

For the matrix-based standards listed in the CSR Schedule 5, Tetra Tech EBA applied the following site-specific factors:

- Intake of contaminated soil;
- Toxicity to soil invertebrate and plants;
- Groundwater used for drinking water; and
- Groundwater flow to surface water used by freshwater and marine aquatic life.

The rationale for determining groundwater use applicable to the Property is discussed below.

4.2 Groundwater Assessment Standards

The MOE *Technical Guidance on Contaminated Sites No. 6, Water Use Determination* (July 2005, updated July 2010, effective February 1, 2011) (TG6) requires that drinking water (DW) standards apply when groundwater wells are 100 m up-gradient and 500 m down-gradient of a site. DW standards may also apply for the protection of future drinking water use based on the hydraulic conductivity of the underlying aquifer and the natural quality of the water in the aquifer. A hydrogeological study to assess these factors is not within the scope of this investigation; therefore, DW standards are conservatively applicable to the Property at this time.

In accordance with TG6, the CSR standards for the protection of freshwater and marine aquatic life (AW) standards apply to a site of an aquatic habitat is within 500 m from the site. The Fraser River is located approximately 50 m south of the Property; as well, due to the Strait of Juan de Fuca being located only 12 km west, the Fraser River at is most likely brackish at this point and therefore CSR AW freshwater and marine standards are applicable to the Property.

Based on zoning information for land near the Property using the City of Vancouver internet web mapping system, no land is zoned for agricultural use within a 500 m radius of the Property. Therefore, CSR standards protective of irrigation water (IW) and livestock water (LW) quality are not considered applicable to the Property.

Schedules 6 and 10 of the CSR provide the numerical standards for the assessment and remediation of groundwater.

5.0 INVESTIGATION METHODOLOGY

The following subsections discuss the methodology of the Phase II ESA.

5.1 Phase II ESA Test Location Rationale

The test locations and analytical testing for the Phase II ESA were selected based on the APECs identified during the previous Phase I ESA. These test locations are discussed in detail in the following table and are shown on Figure 3.

Table 5-1: Phase II ESA Sampling Locations

APECs		Testpit/Borehole/Monitoring Well Locations and Rationale			
1	Former Paint Factory located on the Property from approximately 1971	 Testpits TP16-13 and boreholes BH16-01 and BH16-02– TP16-13 was placed in the south central portion of the Property to allow for the assessment of APEC 1 and APEC 2. BH16-01 was placed in the southwest corner of the property near the centre of APEC 1, while BH16-02 was advanced approximately 20 m northeast of BH16-01. BH16-02 was place on the eastern edge of APEC 1 and in a location to investigate APEC 2 as well. 			
	10 1900.	 Monitoring Wells MW16-01 and MW16-02 – MW16-01 and MW16-02 were installed in their respective boreholes. 			
2	Fill from unknown source on the Property.	 Testpit TP16-13 and boreholes BH16-02 to BH16-03 – Testpit TP16-13 was placed in the south portion of the property over top the former north shore of the Fraser River. The boreholes BH16-02 to BH16-03 were advanced in an evenly spaced grid on the south portion of property where the channel was historically filled. Monitoring Wells MW16-02 and MW16-03 – MW16-02 and MW16-03 were installed in their respective boreholes along south portions of the property. 			
3	Fill from historic stream potentially on the Property.	 Testpit TP16-05 and borehole BH16-04– Testpit TP16-05 was placed in the north central part of the property where the former historical stream was located. BH16-04 was advanced in the former stream channel approximately 14 m south of TP16-05 in the former stream channel. Monitoring Well MW16-04 – Placed centrally on the property near the southern extent of the former stream in order to catch any contaminants that had migrated south along the former stream. 			
4	Various industrial facilities, including construction facilities, a sawmill, concrete plant, and trucking companies located at 2922 East Kent Avenue South.	 Testpit TP16-06 – Placed in the northwest corner of the Property to assess PCOCs in soil that may have arisen from historic operations off-site. Monitoring well MW16-01– MW16-01 was advanced in the southwest portion of the Property. Based on the assumption that the groundwater flow may be variable in the area, possibly influenced by topography and tidal fluctuations, PCOCs from the former industrial property could possibly migrate diagonally to the southeast impacting the south portion of the Property. 			
5	Ocean Concrete Plant and Asphalt Plant located adjacent to the east Property boundary at 8605 East Kent Avenue South.	 Testpit TP16-07 – The testpit is located near the east boundary of the Property to investigate PCOCs from this APEC 5. Monitoring Well MW16-03 – Placed on the east boundary of Property approximately 10 m west from this APEC. 			

The Phase II ESA sampling locations at APECs 1 to 5 are shown on Figure 2.

5.2 Health and Safety

Tetra Tech EBA prepared a site-specific health and safety plan that was implemented during all the field events on the Property. In addition, Tetra Tech EBA field staff and contractors orientated through safe work operations prior to commencement of each field event and participated in a tailboard safety meeting at the beginning of each work day.

5.3 Utility Locates

Prior to testpitting and drilling, Tetra Tech EBA contacted BC One Call and other utility companies to obtain utility information pertinent to the Property. Tetra Tech EBA hired Western Locates, a private utility locating company out of Coquitlam, BC, to locate utilities in the planned investigation locations using instruments sensitive to induced signals.

5.4 Test Pitting and Borehole Completion

Following the completion of underground utility locates by Western Utility Locates on February 10, 2016, eight test pits (TP16-05 to TP16-13) were excavated by Backhoes Unlimited on February 11, 2016 (see Figure 3 for sampling locations). Four of these test pits (TP16-05, TP16-06, TP16-07, and TP16-13) were assessed for PCOCs as part of the environmental assessment, while the rest (TP16-08 to TP16-12) were excavated as part of a preliminary geotechnical assignment on the Property. During excavation of the environmental test pits, samples were collected from the excavators bucket at near surface layers and at change in stratigraphy:

- Test pit TP16-05 was excavated in the north central portion of the property until refusal occurred at a depth of 1.2 metres below ground surface (mbgs). After using the excavator's bucket to scrape the base of the excavation a layer of concrete was discovered. In order to investigate the extent of concrete, a 10 m trench was dug to the south, however, the concrete was present all through the trench at a depth of 1.2 mbgs. We have marked the approximate location of where the concrete layer was noted and may be present (see Figure 2).
- Test pit TP16-06 was excavated in the northwest corner of the property approximately 20 m west of TP16-05. Similar to TP15-05, concrete was discovered approximately at 1.5 mbgs. No further excavation was conducted at the location.
- Test pit TP16-07 was excavated in the northeast corner approximately 20 m east of TP16-05 to a depth of 2.0 mbgs. No concrete was discovered.
- Test pit TP16-13 was excavated approximately 40 m south of TP16-05 to a depth of 2.6 mbgs. No concrete
 was observed during the excavation, however an asphalt layer approximately 0.2 m thick was discovered at
 1.8 mbgs.

Following sampling, testpits were backfilled using the material excavated which was semi-compacted using the backhoe bucket.

On February 12, 2016, four boreholes (BH16-01, BH16-02, BH16-03, and BH16-04) were advanced using hollowstem and solid-stem auger on a track-mounted drill rig operated by Omega Drilling:

- Boreholes BH16-01, BH16-02, and BH16-03 were advanced in the south portion of the property. Each borehole
 was completed using solid-stem auger, with the exception of hollow-stem auger at BH16-03, until a switch to
 solid-stem occurred at 2.5 m due to lack of soil recovery with the split spoon. Solid-stem auger was used to
 complete BH16-03 until refusal occurred at 3.05 mbgs. Similarly, the central borehole BH16-02, had to be
 moved roughly 1.0 m south of its original planned location as a result of refusal at 1.5 mbgs due to possible
 asphalt or concrete presence at this depth.
- Borehole BH16-04 was advanced using solid-stem auger in the central portion of the property approximately 32 m north of BH16-02. The borehole reached a maximum depth of 4.3 mbgs.

During drilling, soil samples were logged and collected from the auger flight manually. Samples were collected from depths at which contamination was suspected based on field observations. Each borehole was completed into a monitoring well. Drill cuttings were placed in two steel drums.

Borehole logs are included in Appendix B.

5.5 Field Screening

Tetra Tech EBA measured volatile head space vapours using a Mini Rae portable gas detector for detection of VOCs. The instrument was calibrated at the start of each field investigation. Bagged samples were allowed to warm over a period of time to stimulate volatilization of substances contained in the samples.

The results of the field screening are recorded on the borehole logs in Appendix B.

5.6 Soil Sampling

Tetra Tech EBA's field representative wore new nitrile sampling gloves prior to collecting each soil sample to prevent cross-contamination at each sampling location. In addition, the auger flights were pressure washed before drilling and between each borehole location. Water for pressure washing was supplied by Omega Drilling and came from their office location in Pitt Meadows, BC. At least one sample from each borehole was selected for laboratory analysis – refer to borehole logs in Appendix B.

Soil samples collected during drilling were placed into laboratory-supplied, clean, pre-labeled jars equipped with Teflon-lined lids. The samples were subsequently placed in a cooler with ice and transported under chain of custody procedures to AGAT for analysis.

5.7 Groundwater Monitoring Well Installation

Groundwater monitoring wells were installed in all borehole locations (MW16-01, MW16-02, MW16-03, and MW16-04). Well completion details for each monitoring well are shown on the logs in Appendix B and a general description of the installation methodology is provided below.

Monitoring wells were constructed of 50 mm nominal flush threaded schedule 40 polyvinyl chloride (PVC) and comprised of a 1.2 m to 2.0 m length of machine slotted PVC screen (0.25 mm in width). Solid PVC pipe was used for the remainder of the well. The borehole annulus was backfilled with silica sand to an elevation of approximately 0.3 m above the slotted interval. Bentonite was placed above the sand-pack to ground surface in the borehole to provide a hydraulic seal. At ground level the PVC pipe was set in a protective stick up steel casing that was cemented into place. Each stick up casing was secured with a lock.

The monitoring completion details are shown on the boreholes logs that are provided in Appendix B and Table 1a and their locations are shown in Figures 2.

5.8 Monitoring Well Development, Purging and Sampling

The monitoring wells were developed on February 16, 2016 to remove residual drilling water and/or fine material from the installation. Development was conducted using 5/8" high density polyurethane waterra tubing with a surge block. Field measurements of pH, temperature, electrical conductivity, and total dissolved solids were monitored during development until three subsequent readings were within 10% of each other.

Prior to sampling on February 18 and 19, 2016, each well was purged using a peristaltic pump using a low volume flow of 200mL/min, or less, until field parameters readings were within 10% of each other. Following purging, groundwater samples were collected directly from the peristaltic pump into clean, labeled, new laboratory-supplied containers for LEPH, HEPH, PAHs, VOCs, and dissolved metals, Samples for dissolved metals were field-filtered and preserved with nitric acid. The groundwater samples were then placed in ice-chilled coolers for temporary storage and transported to AGAT using chain-of-custody procedures.

Standard Tetra Tech EBA procedures were followed during the sampling process, including wearing clean nitrile gloves, using dedicated equipment, and using low-flow sampling techniques, in order to generate representative groundwater samples and minimize fines in the samples.

5.9 Quality Assurance / Quality Control Program

5.9.1 Tetra Tech EBA

During the Phase II ESA, Tetra Tech EBA implemented a QA/QC Program to assess the integrity of the sampling and analytical testing methods. The QA/QC program adhered to the Tetra Tech EBA in-house Quality Management System (QMS), which was designed to generate representative samples, mitigate potential cross contamination between sampling locations and samples, and reduce the potential for systematic bias.

The QA/QC protocol included:

- Recorded subsurface conditions and monitoring and sampling of environmental media;
- Recording the results of field activities in the field concurrently with the activities;
- Use of clean, new sampling gloves at each sampling location;
- Pressure washing of all drill auger flights and sampling tools between drilling locations;
- Placing samples into new and labelled laboratory-supplied containers;
- Transporting samples to the analytical laboratory in chilled coolers using chain-of-custody procedures;
- When appropriate, forming duplicate samples using industry accepted splitting methods;
- Using Canadian Association for Laboratory Accreditation (CALA)-affiliated laboratories that are qualified to analyze the samples using MOE-approved procedures;
- Submitting duplicate samples to the laboratory as "blind" samples, meaning that they are not identified as duplicate samples;
- Decontaminating sampling equipment between sample locations;
- Reviewing the results of QA/QC analyses, assessing the significance of the analytical results and identifying this information in this report;
- A review of this report by a qualified senior Tetra Tech EBA professional to ensure that the report meets Tetra Tech EBA technical and reporting requirements; and
- Importing analytical data into tables using ESdat software to minimize transcription errors.

Part of the QA/QC program involved calculating the relative percent difference (RPD) between sample concentrations of paired blind duplicates. Results were calculated as follows:

- RPD (%) = 2 x 100 x |X Y| / (X + Y), where:
 - X = the measured concentration in the original sample; and
 - Y = the measured concentration in the duplicate sample.

The RPDs should only be calculated and assessed when both the sample and the duplicate is greater than five times the method detection limit (MDL), referred to as the Practical Quantification Limit (PQL).

When evaluating the RPDs for the duplicate samples, a different screening threshold is generally used for different parameters, as follows:

- Soil:
 - Low variability metals were compared to a 45% threshold, and a 60% threshold for high variability metals. High variability metals include Silver (Ag), Aluminum (Al), Barium (Ba), Mercury (Hg), Potassium (K), Molybdenum (Mo), Sodium (Na), Lead (Pb), Tin (Sn), Strontium (Sr), and Titanium (Ti).
- Groundwater:
 - VOCs were compared to a 45% screening threshold.

The threshold values were recommended in the MOE Q&A and BC Laboratory Sampling Manual. If the RPD exceeded the recommended value, an explanation for the variation is provided in the report.

The RPD calculations are discussed in Section 6.5.

5.9.2 AGAT Laboratories

Soil and groundwater samples were submitted to AGAT, a CALA-accredited laboratory. Laboratory testing was conducted using methods outlined in the British Columbia Environmental Laboratory Manual. Laboratory QA/QC reports are attached to the laboratory reports presented in Appendix C. Samples included in the QA/QC reports consist of laboratory batches and will include random samples from the lab report and potentially other projects to complete a batch.

AGAT measures the temperature of samples received by the laboratory, and has established an internal guideline of 10°C as the maximum temperature for samples upon receipt. AGAT will note any sample deficiencies, such as unacceptable headspace, broken jars or bottles, etc. Additionally, AGAT uses various methods for checking the quality of sample analytical results. These methods are discussed in the attached Laboratory Certificates.

6.0 **FINDINGS**

6.1 Surficial Geology

The soil encountered on the Property was generally fill material consisting of medium to coarse grained sand and gravel. At test pits TP16-05 and TP16-06, a concrete slab was discovered approximately 1.5 mbgs at each location. The excavation was unable to continue due to the excavator being unable to penetrate through the concrete. Similarly, a layer of asphalt approximately 0.2 m thick was discovered at TP16-13 approximately 1.8 mbgs, however

the excavator was able to break through the layer and continue digging. Refusal while drilling also occurred at BH16-03 and BH16-02, although no asphalt was visible, it is believed the refusal was the result of asphalt.

In addition to this Phase II, Tetra Tech performed a geotechnical assessment on the Property which included further test pitting (Tetra Tech 2016). Based on the results of the geotechnical testpits, an approximate extent of the concrete and asphalt can be seen in Figure 2. The geotechnical report concludes that the soil conditions encountered during the February 11 and 12, 2016 investigation are generally consistent with the anticipated surficial geology. The geotechnical description of the soils encountered during the investigation, which was completed concurrently with this investigation, are summarized as follows

- FILL: Variable fill was encountered within all of the test pits and test holes. The fill generally consists of a 0.1 m thick layer of topsoil underlain by loose to compact sand, silt, gravel, cobbles, asphalt, concrete, organics, and wood waste. Due to the presence of the concrete and asphalt, six of the eight test pits achieved refusal and were unable to advance through the fill. In addition, the other two test pits were also not able to advance through the fill due to encountering the groundwater, which resulted in caving in of the test pit side walls. The fill thickness was measured to be 1.9 m and 6.1 m within BH16-02 and BH16-04, respectively. At BH16-02, the wood waste was measured to be approximately 2 m thick.
- SILT: The fill material is underlain by low to medium-plastic, firm to stiff silt. At BH16-02, the silt contains several sand lenses. At BH16-04, the upper 300 mm of silt contains a trace of organics/wood. The natural water content of the silt at BH16-04 is 85.3% in the upper 300 mm that contains the organics/wood and 42.5% in the lower portion of the deposit.

In the south portion of the Property at locations BH16-02, BH16-03, and TP16-13, wood debris and soil with a creosote (wood preservative) like odour was discovered to be at various locations from the surface to 6.1 mbgs at BH16-02. Therefore since the wood material was discovered mixed with the APEC 2 fill material, it is possible that the fill used originated from a former sawmill operations to the east. Soils encountered during drilling are shown in detail on the attached borehole logs in Appendix B.

6.2 Groundwater Elevations and Flow Direction

Groundwater elevations were surveyed using a manhole cover located on the sidewalk to the northeast of the property. The manhole was set as an arbitrary datum at an elevation of 100 m. Groundwater elevations measured on February 18, 2016 were 99.77 m at MW16-01, 99.67 m at MW16-02, 99.02 m at MW16-03. And 99.76 m at MW16-04. Table 1b summarizes the groundwater depths and elevations.

To determine the groundwater flow regime at the Property, the groundwater elevations measured on February 18, 2016 from monitoring wells MW16-01 to MW16-04 were interpolated and used to create a groundwater contour map, shown on Figure 5. The groundwater contour map also reflects the elevations measured on that day.

The groundwater elevations measured on February 18, 2016 indicate an average horizontal hydraulic gradient of 0.10 (m/m) to the southeast. As a result of the Fraser River being approximately 50 m south, we inferred groundwater direction to be to the south. The unexpected groundwater flow to the southeast is possibly attributed to the townhouses adjacent to the east acting as a sink. As well, higher conductivity soils may be located in the southeast corner of the property. Further studying of the groundwater direction would be required to determine the actual direction.

6.3 Soil Results

Five soil samples collected from boreholes BH16-01 to BH16-04 and four soil samples collected from test pits TP16-05 to TP16-07 and TP16-13 were submitted to AGAT for analysis of hydrocarbons, PAHs, and metals. Five samples from boreholes BH16-01 and BH16-02, and test pits TP16-07 and TP16-13, were analyzed for VOCs.

Analytical soil results found all VOC and PAH parameters to be below laboratory detection limit and/or well below relevant CSR RL standards. As well, nearly all hydrocarbon parameters analyzed were below detection limit or relevant CSR standards, with the exception of HEPH in borehole BH16-02 which was found to exceed the CSR standard of 1000 µg/g at a concentration of 1440 µg/g.

Inorganic metal parameters found to be exceeding CSR RL standards were; arsenic at BH16-03, TP16-07, and TP16-13; chromium at BH16-01; and antimony, copper, molybdenum, and zinc at BH16-03 and TP16-13. The following table summarizes the soil analytical exceedances and compares the results to the CSR standards.

Parameters	CSR-RL Standard	BH16-01 (1.2 mbgs)	BH16-02 (5.2 mbgs)	BH16-03 (1.1 mbgs)	TP16-07 (0.5 mbgs)	TP16-13 (2.0 mbgs)
HEPH	1000	<csr< td=""><td>1440</td><td><csr< td=""><td><csr< td=""><td><csr< td=""></csr<></td></csr<></td></csr<></td></csr<>	1440	<csr< td=""><td><csr< td=""><td><csr< td=""></csr<></td></csr<></td></csr<>	<csr< td=""><td><csr< td=""></csr<></td></csr<>	<csr< td=""></csr<>
Antimony	20	<csr< td=""><td><csr< td=""><td>144</td><td><csr< td=""><td>60.6</td></csr<></td></csr<></td></csr<>	<csr< td=""><td>144</td><td><csr< td=""><td>60.6</td></csr<></td></csr<>	144	<csr< td=""><td>60.6</td></csr<>	60.6
Arsenic	15	<csr< td=""><td><csr< td=""><td>326</td><td>27.5</td><td>133</td></csr<></td></csr<>	<csr< td=""><td>326</td><td>27.5</td><td>133</td></csr<>	326	27.5	133
Chromium	60	121 (total Chromium)	<csr< td=""><td><csr< td=""><td><csr< td=""><td><csr< td=""></csr<></td></csr<></td></csr<></td></csr<>	<csr< td=""><td><csr< td=""><td><csr< td=""></csr<></td></csr<></td></csr<>	<csr< td=""><td><csr< td=""></csr<></td></csr<>	<csr< td=""></csr<>
Copper	150	<csr< td=""><td><csr< td=""><td>182</td><td><csr< td=""><td>250</td></csr<></td></csr<></td></csr<>	<csr< td=""><td>182</td><td><csr< td=""><td>250</td></csr<></td></csr<>	182	<csr< td=""><td>250</td></csr<>	250
Molybdenum	10	<csr< td=""><td><csr< td=""><td>26.2</td><td><csr< td=""><td>25.9</td></csr<></td></csr<></td></csr<>	<csr< td=""><td>26.2</td><td><csr< td=""><td>25.9</td></csr<></td></csr<>	26.2	<csr< td=""><td>25.9</td></csr<>	25.9
Zinc	150	<csr< td=""><td><csr< td=""><td>538</td><td><csr< td=""><td>764</td></csr<></td></csr<></td></csr<>	<csr< td=""><td>538</td><td><csr< td=""><td>764</td></csr<></td></csr<>	538	<csr< td=""><td>764</td></csr<>	764

Table 6-3: Soil Analytical Exceedances (µg/g)

Notes: All values in $\mu g/g$ <CSR – Values less than the CSR standard.

Soil analytical summary tables are found in Tables 2a-c and detailed in laboratory reports in Appendix C, as well soil exceedances are shown on Figure 3a. Section 7 of this report discusses the analytical testing and findings in soil and groundwater relative to their APECs.

6.4 Groundwater Results

Laboratory analysis of groundwater found benzo(a)pyrene to be exceeding the CSR AW standard of 0.1 μ g/L and the CSR DW standard of 0.01 μ g/L at wells MW16-01 an MW16-03 with concentrations of 0.35 μ g/L and 0.18 μ g/L, respectively. As well benzo(a)pyrene was slightly exceeding the CSR DW standard in a duplicate sample (MW16-05) from well MW16-02 at a concentration of 0.02 μ g/L. Pyrene was also found to exceed the CSR AW standard of 0.2 μ g/L in wells MW16-01 and MW16-02 with concentrations of 0.67 μ g/L and 0.38 μ g/L, respectively. All other hydrocarbon, PAHs, and VOC parameters analyzed were below detection limit and/or below relevant CSR standards.

Inorganic metal parameters found to be exceeding the CSR DW standard were antimony in well MW16-03 and arsenic in well MW16-01. Manganese was also found to exceed the CSR DW standard, however the standard was deemed inapplicable to the Property based on Stage 8 amendments to the CSR which came into effect on January 24, 2013.

Parameter	CSR –AW	CSR-DW	MW16-01	MW16-02 (DUP: MW16-05)	MW16-03	MW16-04
Benzo(a)pyrene	0.1	0.01	0.34	0.02 (DUP)	0.18	<csr< td=""></csr<>
Pyrene	0.2	NS	0.67	<csr< td=""><td>0.38</td><td><csr< td=""></csr<></td></csr<>	0.38	<csr< td=""></csr<>
Antimony	200	6	<csr< td=""><td><csr< td=""><td>23.4</td><td><csr< td=""></csr<></td></csr<></td></csr<>	<csr< td=""><td>23.4</td><td><csr< td=""></csr<></td></csr<>	23.4	<csr< td=""></csr<>
Arsenic	50	10	20.4	<csr< td=""><td><csr< td=""><td><csr< td=""></csr<></td></csr<></td></csr<>	<csr< td=""><td><csr< td=""></csr<></td></csr<>	<csr< td=""></csr<>

Table 6-4: Groundwater Analytical Exceedances (µg/L)

Notes: All values in µg/L <CSR – Values less than the CSR standard. NS – No Standard DUP - duplicate

Groundwater analytical summary tables are found in Tables 3a-c and the detailed laboratory reports in Appendix C, as well groundwater exceedances are shown on Figure 3b.

6.5 Soil Vapour

The installation of vapour probes for vapour analysis was not conducted during this Phase II ESA. An examination of volatile compounds, analyzed for soil and groundwater samples, was conducted to determine if any CSR Schedule 7 parameters were detected above the reported laboratory detection limit (RDL).

The following Schedule 7 parameters were found above the RDL:

- Toluene was found to be above its soil detection limit of 0.05 µg/g at BH16-01 with a concentration of 0.12 µg/g; however was not detected above RDL in groundwater samples.
- Naphthalene was discovered to be above its soil detection limit of 0.02 µg/g at locations BH16-01, BH16-04, TP16-07, and TP16-13 with concentrations of 0.57 µg/g, 0.01 µg/g, 0.03 µg/g, 0.01 µg/g, and 0.15 µg/g, respectively. In groundwater, naphthalene was found to be above its detection limit of 0.05 µg/L at a concentration of 1.25 µg/L at MW16-01 and 0.11 µg/L at MW16-03.

Toluene was not considered elevated as it did not reach 50% of the CSR standard. Similarly naphthalene was also not considered elevated as it was not above 50% the respective CSR standards.

Since the BC MOE approved soil vapour model is very conservative and with the current RDLs, naphthalene always will be found to exceed Schedule 7 standards even if the analytical result is below the RDL. So modelling of this parameter was not conducted.

If soil vapour are to be characterized further, then actual soil vapour samples should be collected.

6.6 Quality Assurance and Quality Control Results

During the Phase II ESA, Tetra Tech EBA implemented a QA/QC Program to assess the integrity of the sampling methodology and laboratory analytical testing. Duplicate samples were taken from each media tested and for approximately every ten samples that were collected during the field investigation on the Property. The QA/QC results of the duplicate samples collected during the Phase II ESA are tabulated in Table 4 and Table 5. The QA/QC results were as follows:

Table 6-6:	Quality	Assurance	and	Quality	Control	Results

Sample ID	Duplicate ID	Date	Sample Type	Parameters Analyzed in Duplicate	Lowest Relative Percent Difference (RPD)	Highest Relative Percent Difference (RPD)
16BH04	00BH04	February 12, 2016	Soil	pH, LEPH/HEPH, PAHs, metals, BTEXS VOC	0 (antimony, beryllium, pH)	26 (nickel)
MW16-02	MW16-05	February 19, 2016	Groundwater	pH, LEPH/HEPH, PAHs, metals, BTEXS, VOC	0 (boron, arsenic)	9.5 (aluminum)

The RPDs were only calculated and assessed when both the sample and the duplicate concentrations were greater than five times the method detection limits identified by the lab. As indicated in Table 6.5 above, no RPDs exceeded the recommended screening threshold.

7.0 DISCUSSION

The primary objective of the Phase II ESA was to investigate potential soil and groundwater impacts from the APECs identified in the previous Phase I ESA. The following sections discuss the analytical testing and findings in soil and groundwater relative to their APECs.

7.1 APEC 1: Former Paint Factory located on the Property from approximately 1971 to 1986

7.1.1 Soil

Boreholes BH16-01 – south west corner of the Property, BH16-02- south mid portion of Property, and testpit TP16-13 – beside borehole BH 16-02 were advanced in the former general area of the paint factory in the southwest portion of the property. Generally the exceedances identified in soil were inorganic metal parameters. The soil contamination identified is as follows:

- BH16-01(1.2 mbgs): chromium
- BH 16-02 (5.2 mbgs): HEPH
- TP16-13 (2.0 mbgs): antimony, arsenic, copper, molybdenum, and zinc.

As the soil at TP16-13 contained wood debris and asphalt thus the inorganic metal exceedances found at TP16-13 are believed to be the result of contaminated fill material used during the infilling of the former river channel.

Further investigation at BH16-01 would be required to determine if the chromium exceedance at BH16-01 was a result of activities in the former paint factory i.e. paint production and handling.

7.1.2 Groundwater

Groundwater samples were collected from MW16-01 and MW16-02. The following exceedances were identified:

- MW16-01:
 - Benzo(a)pyrene greater than the CSR AW and DW standard

- Pyrene greater than the CSR AW standards
- Arsenic greater than the CSR AW and DW standards
- MW16-02:
 - Benzo(a)pyrene greater than the CSR DW standard

The hydrocarbon exceedances of benzo(a)pyrene and pyrene and the metal exceedance of arsenic are most likely associated with the fill material used to infill the river channel. Additionally, benzo(a)pyrene and pyrene are known to bind to fine soil particles such as silt. Therefore, since monitoring well MW16-01 was screened within a silt fluvial layer and monitoring well MW16-02 was screened in a layer with trace silt, there is potential that silt in the collected samples may have caused elevated benzo(a)pyrene and pyrene concentrations. A resampling event is required in order to verify this assumption.

7.2 APEC 2: Fill from unknown source on the Property

7.2.1 Soil

Boreholes BH16-02 and testpit TP16-13 were advanced in the middle of APEC 2 in the mid-south part of the Property and BH16-03 was advanced near the eastern portion of the Property again in the south, all to investigate the type of fill that may have be placed to infill the former river channel. The following parameters were found to exceed the applicable standards:

- BH 16-02 (5.2 mbgs): HEPH
- TP16-13 (2.0 mbgs): antimony, arsenic, copper, molybdenum, and zinc
- BH 16-03 (1.1 mbgs): antimony, arsenic, copper, molybdenum, and zinc

The metal exceedances are believed to be a result of the fill material used during the infilling of the former river channel. As a result of wood material having been observed mixed in with the fill, it is possible that the fill material used during the infilling of the river channel originated from a former sawmill operation to the east.

7.2.2 Groundwater

Monitoring wells MW16-02 and MW16-03 were constructed in the appropriate boreholes along the area of the former river channel. The following groundwater parameters were found to exceed the applicable standards:

- MW16-02:
 - Benzo(a)pyrene greater than the CSR DW standard
- MW 16-03:
 - Benzo(a)pyrene greater than the CSR AW and DW standard
 - Pyrene greater than the CSR AW standards
 - Antimony greater than the DW standards

MW16-02 and MW16-03 were both installed in sand layers where silt was identified. As previously mentioned, a resampling event would be required in order to determine if the exceedances are from soil particulate matter in the samples.

7.3 APEC 3: Fill from historic stream potentially crossing the Property

7.3.1 Soil

Samples were analyzed from borehole BH16-04 at 1.2 mbgs and testpit TP16-05 at 0.9 mbgs which are located in the middle of the Property (east/west) and closer to the northern property line, along the suspected location of the former historic stream location.

Laboratory results from both locations found no exceedances of LEPH, HEPH, PAHs, or metals. Parameters were generally being below laboratory detection limit and/or below the relevant CSR RL standards.

During the investigation, concrete was encountered at 1.5 mbgs at TP16-05 didn't allow for a visual investigation of deeper fill material, however a depth of 4.57 mbgs was reached at BH16-04. Although there was a slight hydrocarbon like odour was noted at 1.2 mbgs, all PCOC concentrations were below relevant CSR standards and no other field visual or olfactory evidence of potential soil contamination was observed.

The fill material used in the historical stream is believed to be from a different source than the fill material located in the former river channel based on observation that no wood material or creosote odours were observed.

7.3.2 Groundwater

Monitoring well MW16-04 was installed to investigate the fill material used to infill the former river channel. Analytical results for the monitoring well indicated all hydrocarbons, PAHs, and VOCs were below laboratory detection limit. All metal parameters were below the relevant CSR AW and DW standards.

7.4 APEC 4: Various industrial facilities, including construction facilities, a sawmill, concrete plant, and trucking companies located at 2922 – East Kent Avenue

7.4.1 Soil

Testpit TP16-06 (northwest corner of Property) and borehole BH16-01 (southwest corner of Property) were used to determine if soil near groundwater level had been contaminated by former usage of the Property by off-Site historical operations.

Due to refusal at TP16-06 at 1.5 mbgs from the presence of concrete, the excavation was unable assess any fill below that level and did not encounter groundwater level. However, due to the APECs relatively cross-gradient location to the west, contamination that may possibly migrate through groundwater stemming from the neighbouring historical operation would most likely migrate diagonally to the southeast and therefore impact the southwestern portion of the property at BH16-01. The groundwater survey conducted on the Property indicated the groundwater flow is potentially to the southeast. Since the groundwater direction at the Property may be affected by local influences (i.e. townhouses to the east or higher conductivity soil in the southeast), further assessment is required to accurately determine the direction.

The only soil constituent found to exceed the applicable standards was chromium in TP16-01 at the southwest corner of the property at 1.2 mbgs. The exceedance is believed to be from the former paint factory operations; however further investigation is required.

7.4.2 Groundwater

Groundwater samples were collected from MW16-1. The following parameters exceeded the applicable standards:

- MW16-01:
 - Benzo(a)pyrene greater than the CSR AW and DW standard
 - Pyrene greater than the CSR AW standards
 - Arsenic greater than the CSR AW and DW standards

All other PCOCs were either below laboratory detection limit or well below relevant CSR standards. Given that groundwater flow direction in the area is potentially flowing southeast, any PCOCs migrating to the site from APEC 4 would be found at their highest concentrations at MW16-01 and MW16-02, and at their lowest concentrations at MW16-03; however since MW16-02 has fewer exceedances and lower PCOC concentrations than MW16-03, the contaminants are therefore most likely not from the neighbouring APEC 4.t. As well, benzo(a)pyrene and pyrene concentrations are possibly elevated as a result of soil particulate matter entering the groundwater samples due to silt particles; however, further investigation would be required to determine these assumptions.

7.5 APEC 5: Ocean Concrete Plant and Asphalt Plant located adjacent to the east Property boundary at 8605 – East Kent Avenue South

7.5.1 Soil

Borehole BH16-03 and testpit TP16-07 were advanced on the eastern boundary of the Property approximately 10 m west of the historical asphalt factory and concrete plant site. The following parameters were found to have concentrations exceeding the applicable standards:

- BH16-03 (1.1 mbgs): antimony, arsenic, copper, molybdenum, and zinc
- TP16-07 (0.5 mbgs): arsenic

The arsenic exceedance at TP16-07 is potentially the result of the neighbouring asphalt and concrete factory operations at APEC 5; however, the contaminants identified at BH16-03 are more likely to be associated with fill material used during the infilling of the former river channel property. Further investigation would be required to support this assumption.

7.5.2 Groundwater

Monitoring well MW16-03 in the southeast portion of the Property was installed in BH16-03 approximately 10 m west of the historical asphalt factory and concrete plant site to the east.

The following groundwater parameters were found to exceed the applicable standards:

- MW 16-03:
 - Benzo(a)pyrene greater than the CSR AW and DW standard
 - Pyrene greater than the CSR AW standards
 - Antimony greater than the DW standards

All other PCOCs were either below laboratory detection limit or well below the relevant CSR standards. Although groundwater direction is possibly to the southeast, the proximity of APEC 5 to the Property means groundwater would still be at risk from potential contaminants. Further investigation would be required to determine the source of these contaminants. As previously stated, the elevated benzo(a)pyrene and pyrene concentrations are potentially the result of soil particulates being present in the groundwater samples. A resampling event is needed in order to verify this assumption.

7.6 Quality Assurance / Quality Control

During the Phase II ESA, the accuracy of laboratory analyses is assessed by calculating the RPD values for duplicate pairs when the result of each analysis was greater than a multiple of five of the MDL. Elevated analytical variability is common when analyte concentrations are within a factor of five of the MDL. The screening thresholds were applied as stated in Section 6.5.

All the calculated RPD values were less than the RPD discussion trigger. Therefore Tetra Tech EBA considers the results of the laboratory analyses acceptable for the present application and no re-testing or further review of the analytical data is warranted.

In addition, AGAT conducts an internal QA/QC on the laboratory analysis for all the samples and those batches were within acceptable limits. Thus, the analytical results were considered representative of the soil and groundwater samples obtained from the Property.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The overall results of the Phase II ESA are summarized in the Table 8.0 below.

	Identified COCs Exce	eding CSR standards
	Soil	Groundwater
	 Chromium exceeds the CSR RL standard at BH16-01 (1.2 m) 	 Benzo(a)pyrene exceeds at CSR DW standard at MW16-02
Former Paint	 HEPH exceeds the CSR RL standard at BH16-02 (5.2 m) 	 Benzo(a)pyrene, pyrene, and arsenic exceed CSR AW and DW standards at MW16-01
the Property from approximately 1971 to 1986.	 Antimony, arsenic, copper, molybdenum, and zinc exceed the CSR RL standards at TP16-13 (2.0 m) Metal and HEPH exceedances at TP16-13 are suspected to be associated with APEC 2 	Benzo(a)pyrene, pyrene, and arsenic exceedances are most likely from the fill material used during the infilling of the former river channel (APEC 2)
APEC 2 River channel fill from unknown source on the Property.	 HEPH exceeds the CSR RL standard at BH16- 02 (5.2 m) Antimony, arsenic, copper, molybdenum, and zinc exceed the CSR RL standards at TP16-13 (2.0 m) Antimony, arsenic, copper, molybdenum, and zinc exceed the CSR RL standard at BH16-03. (1.1 m) 	 Benzo(a)pyrene, pyrene, and antimony exceed at MW16-03
APEC 3 Fill from historic stream potentially on the Property.	 Soil samples assessed meet the CSR RL standards at TP16-05 (0.9 m) and BH16-04 (1.2 m) There is no suggested evidence that there are environmental impacts 	 Groundwater samples obtained were below laboratory detection limit and/or well below CSR AW and DW standards

Table 8-0: Phase II ESA Findings

Table 8-0: Phase II ESA Findings

	Identified COCs Exce	eding CSR standards
	Soil	Groundwater
APEC 4 Various industrial facilities, including construction facilities, a sawmill, concrete plant, and trucking companies located to the west	 Soil samples assessed meet the CSR RL a standards at TP16-06 (1.2 m) Chromium exceeds the CSR RL standard at BH16-01 (1.2 m) The chromium exceedance is believed to be associated with APEC 1 	 Benzo(a)pyrene, pyrene, and arsenic exceed CSR AW and DW standards at MW16-01 Benzo(a)pyrene, pyrene, and arsenic exceedances are most likely from the fill material used during the infilling of the former river channel (APEC 2)
APEC 5 Ocean Concrete Plant and Asphalt Plant located adjacent to the east	 Arsenic exceeds the CSR RL standard at TP16-07 (0.5 m) Antimony, arsenic, copper, molybdenum, and zinc exceeded CSR RL standards at BH16-03 (1.1 m) All Metal exceedances at BH/MW16-03 are suspected to be associated with APEC 2 as they are the same parameter grouping as was identified in testpit TP16-13 and taken from similar fill material 	 Benzo(a)pyrene, pyrene, and antimony exceed at MW16-03 Benzo(a)pyrene, pyrene, and antimony exceedances are most likely from the fill material used during the infilling of the former river channel (APEC 2) – see comment to left under soil.
Notes: APEC – Area CSR – Contar	of Potential Environmental Concern RL ninated Sites Regulation	- Residential Land Use Standard

AW – Freshwater Aquatic Life Standard

DW – Drinking Water Standard

8.1 **Recommendations**

Constituents with concentrations exceeding the applicable CSR Standards are present on the Property. Three APECs (1, 2, and 5) are carried forward as Areas of Environmental Concern and further investigation is recommended to delineate the lateral and vertical extent of the constituents that exceed the applicable standards.

9.0 CLOSURE

This report has been prepared based on the scope of work and for the use of the City of Vancouver, which includes distribution as required for the purposes for which this assessment was commissioned. The assessment has been carried out in accordance with generally accepted engineering practice. No other warranty is made, either express or implied. Professional judgment has been applied in developing the recommendations in this report.

This report was prepared by personnel with professional experience in investigations of this nature and who specifically conducted the investigations at this Site. Reference should be made to the 'Geoenvironmental Report – General Conditions' attached in Appendix A that forms a part of this report.

We trust this report meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech EBA Inc.

Prepared by: Drew Taylor, Dipl. Tech. Environmental Technologist Environment Practice Direct Line: 778.945.5731 Drew.Taylor@tetratech.com

Reviewed by: Lori C. Larsen, P.Ag. CSAP Project Manager Environment Practice Direct Line: 778.945.5820 Lori.Larsen@tetratech.com

/cee

Televa Sadojen J

Reviewed by: Jelena Sladojevic Msc. EPt Project Manager Environment Practice Direct Line: 778.945.5843 Jelena.Sladojevic@tetratech.com

REFERENCES

- BC Ministry of Environment (2009) Technical Guidance on Contaminated Sites No. 1, Site Characterization and Confirmation Testing.
- BC Ministry of Environment (2011) Technical Guidance on Contaminated Sites No. 6, Water Use Determination.
- BC Environmental Management Act (2014) Contaminated Sites Regulation, BC Reg. 375/96 including amendments up to BC Reg, 4/2014, January 31, 2014.
- Tetra Tech EBA (2016a) *Phase I ESA 3010 East Kent Avenue, Vancouver, BC,* prepared for City of Vancouver, File No. ENV03059-01
- Tetra Tech EBA (2016b) *Preliminary Geotechnical Report for 3010 East Kent Avenue South, Vancouver, BC,* Prepared for the City of Vancouver. File No. ENV03059-01

TABLES

Table 1a	Summary o	of Monitoring V	Nell Completion Details	

- Table 1b Groundwater Monitoring Data
- Table 2aSoil Analytical Results Hydrocarbons
- Table 2b Soil Analytical Results Metals
- Table 2c Soil Analytical Results Volatile Organic Compounds
- Table 3a Water Analytical Results Hydrocarbons
- Table 3bWater Analytical Results Metals
- Table 3c
 Water Analytical Results Volatile Organic Compounds
- Table 4 Soil Quality Assurance / Quality Control Analytical Results
- Table 5
 Groundwater Quality Assurance / Quality Control Analytical Results

Table 1a: Summary of Monitoring Well Completion Details

	UTM Coo	ordinates	Ground Elevation	Well Installation		Drilling	Drill	Inspection		Drilled Length	Borehole		PVC Slot Size	Stick up (m	Slotted	PVC Interval m-bgs)	Sandpac	k Interval (n bgs)	- Bentor	nite Interval (m BG S)	Depth to Groundwater (m- bgs)		
Borehole	Easting	Northing	(m-aad)	Date	General Location	Contractor	Designation	Personnel	Drilling Method	(m)	Diameter (m)	PVC Specifications	(inches)	ags)	(top)	(bottom)	(Top)	(bottom)	(top)	(bottom)	18-Feb-16	Screened Lithology	
BH/MW16-01	496730	5450337	101.84	12-Feb-10	6 South west corner of the Property		M5T MARL TECH Track Rig	DT/CF	Solid Stem	3.96	0.152	Nominal 2" Schedule 40	0.01	0.79	1.5	2 3.0	5 12	2 30	5 0.	15 1.2	2 20	Sand (FILL), Silt, some Sand (FLUVIAL)	
BH/MW16-02	496749	5450348	101.46	12-Feb-10	6 South central portion of the Property		M5T MARL TECH Track Rig	DT/CF	Solid Stem	7.62	0.152	Nominal 2" Schedule 40	0.01	0.78	1.3	7 2.9	0 10	7 29	0 0.	15 1.0	7 1.7	Sand, gravelly, trace silt, trace organics (FILL)	
BH/MW16-03	496774	5450344	100.91	12-Feb-10	6 South east corner of the Property		M5T MARL TECH Track Rig	DT/CF	Hollow/Solid Stem	4.27	0 216 / 0.152	Nominal 2" Schedule 40	0.01	0.84	1.	2 3.0	5 12	2 30	5 0.	15 1.2	2 18	2 Sand, Silty, some Gravel, some woody debris (FILL)	
BH/MW16-04	496749	5450376	101.62	12-Feb-10	6 Centrally located on the Property.		M5T MARL TECH Track Rig	DT	Solid Stem	4.57	0.152	Nominal 2" Schedule 40	0.01	0.79	1.3	o7 2.9	0 10	7 29	0 0.	15 1.0	7 18	Sand and Gravel (F LL) and Sand and Wood material (FILL)	
Notes: UTM Coordinate m - metres m-aad - metres m-ags - metres m-bgs - metres	as are NAD83, 2 above arbitrary above ground si below ground si	Zone 10 datum (manhol urface urface	e cover on the	sidewalk north	east of the property was used as arbitrar	y datum at an ele	vation of 100 m)																

PHASE II ESA 3010 East Kent Avenue South FILE: 704-ENV.VENV03059-01 | MARCH 2016 | ISSUED FOR USE

Table 1b: Groundwater Monitoring Data

Monitoring	Ground Surface Elevation (m-aad)	Top of Casing (m-aad)	Stick up Height (m-	Monitoring Well Total Depth	Groundwater Levels (mBTOC)	Groundwater Levels (m-bgs)	Groundwater Elevation (m-aad)
Well	18-F	eb-16	ags)	(mBTOC)		18-Feb-16	
MW16-01	101.84	102.66	0.79	3.05	2.86	2.07	99.77
MW16-02	101.46	102.23	0.78	2.90	2.57	1.79	99.67
MW16-03	100.91	101.75	0.84	3.05	2.66	1.82	99.02
MW16-04	101.62	102.41	0.79	2.90	2.65	1.86	99.76

Notes:

m - metres

m-aad - metres above arbitrary datum

m-ags - metres above ground surface

mBTOC - metres below top of casing.

m-bgs - metres below ground surface

Monitoring wells were surveyed on February 18, 2016. A manhole cover on the sidewalk to the northeast of the property was used as an arbitrary datum at an elevation of 100 m.

Table 2a: Soil Analytical Results - Hydrocarbons

				16BH01	16BH02	16BH03	16BH04	00BH04	16NTP05	16NTP06	16ETP07	16TP13
Parameter	Unit	CSR - PL	CSR - RL	1.2 m (4')	5.2 m (17')	1.1 m (3.5')	1.2 m (4')	1.2 m (4')	0.9 m (3')	1.2 m (4')	0.5 m (1.6')	2.0 m (6.6')
				12-Feb-2016	12-Feb-2016	12-Feb-2016	12-Feb-2016	12-Feb-2016	11-Feb-2016	11-Feb-2016	11-Feb-2016	11-Feb-2016
Hydrocarbons												
EPH ₁₀₋₁₉	µg/g	-	-	25	70	50	<20	<20	<20	21	<20	39
EPH ₁₉₋₃₂	µg/g	-	-	309	1440	200	56	149	24	67	40	390
LEPH	µg/g	1000	1000	24	70	50	<20	<20	<20	21	<20	39
HEPH	µg/g	1000	1000	308	1440	200	56	148	24	67	39	390
Polycyclic Aromatic Hydrocarbons (PAHs)												
1-Methylnaphthalene	µg/g	-	-	0 06	<0 03	<0 01	<0.01	0.01	<0 01	<0.01	0.01	0.02
2-methylnaphthalene	µg/g	-	-	0.10	<0 03	0 01	<0.01	0.01	<0 01	<0.01	0.01	0.04
Acenaphthene	µg/g	-	-	0.08	<0 03	<0 01	<0.01	0.01	<0 01	<0.01	<0.01	0.04
Acenaphthylene	µg/g	-	-	0.02	<0 03	0 02	0 03	0.20	<0 01	<0.01	0.01	0.02
Anthracene	µg/g	-	-	0.11	<0 06	<0 02	<0.02	0.11	<0 02	<0.02	<0.02	0.07
Benz(a)anthracene	µg/g	1	1	0.06	<0 06	0 03	0 03	0.23	<0 02	<0.02	0.02	0.07
Benzo(a)pyrene	ug/g	1 ^{#1}	1 #1	0.07	<0.2	<0.05	<0 05	0 23	<0.05	<0 05	<0 05	0.10
Benzo(b)fluoranthene	µg/g	1	1	0.06	<0 06	0 02	0 03	0.22	<0 02	<0.02	0.03	0.09
Benzo(b+j)fluoranthene	hð/ð	-	-	0 09	<0 03	<0 03	0 03	0.33	<0 03	<0.03	0.05	0.13
Benzo(g,h,i)perylene	µg/g	-	-	0 05	<0.2	<0 05	<0.05	0.29	<0 05	<0.05	<0.05	0.09
Benzo(j)fluoranthene	µg/g	-	-	0 03	<0 06	<0 02	<0.02	0.11	<0 02	<0.02	0.02	0.04
Benzo(k)fluoranthene	µg/g	1	1	0 03	<0 06	<0 02	<0.02	0.10	<0 02	<0.02	0.02	0.04
Chrysene	hð/ð	-	-	0.10	<0.2	<0 05	<0.05	0.25	<0 05	<0.05	<0.05	0.10
Dibenz(a,h)anthracene	hð/ð	1	1	<0.02	<0 06	<0 02	<0.02	0.05	<0 02	<0.02	<0.02	<0 02
Fluoranthene	µg/g	-	-	0.35	<0.2	<0 05	0 06	0.47	<0 05	<0.05	0.07	0.30
Fluorene	µg/g	-	-	0.08	<0 06	<0 02	<0.02	0.03	<0 02	<0.02	<0.02	0.07
Indeno(1,2,3-c,d)pyrene	µg/g	1	1	0.04	<0 06	<0 02	0 02	0.17	<0 02	<0.02	0.03	0.04
Naphthalene	µg/g	5	5	0.57	<0 03	<0 01	0 01	0.03	<0 01	<0.01	0.01	0.15
Phenanthrene	µg/g	5	5	0.37	0.07	0 02	0 04	0.14	<0 02	0 02	0.03	0.26
Pyrene	µg/g	10	10	0.3	0.07	0 03	0 06	0.35	<0 02	<0.02	0.10	0.27
Laboratory Work Order Number				16V068853	16V068853	16V068853	16V068853	16V068853	16V068853	16V068853	16V068853	16V068853
Laboratory Identification Number				7389744	7389753	7389734	7389757	7389756	7389718	7389721	7389722	7389728

NOTES

#1	CSR Schedule 5 substance.
-	Not analyzed or no CSR standard exists.
<	Concentration is less than the laboratory detection limit indicated.
EPHs	Extractable Petroleum Hydrocarbons.
LEPHs/HEPHs	Light and Heavy EPHs.
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 4/2014 - January 31, 2014 - Schedules 4 and 5).
PL	Park Land Standards
RL	Residential Land Standards
Site specific factors include:	- Intake of contaminated soil.
	- Toxicity to soil invertebrates and plants.
	- Groundwater used for drinking water.
	- Groundwater flow to surface water used by freshwater and marine aquatic life.
	-Groundwater used for irrigation.
	Most stringent applicable site specific factor is shown.
Bold	Bold and shaded indicates an exceedance of the CSR Standard

Table 2b: Soil Analytical Results - Metals

				16BH01	16BH02	16BH03	16BH04	00BH04	16NTP05	16NTP06	16ETP07	16TP13
Parameter	Unit	CSR - PL	CSR - RL	1.2 m (4')	5.2 m (17')	1.1 m (3.5')	1.2 m (4')	1.2 m (4')	0.9 m (3')	1.2 m (4')	0.5 m (1.6')	2.0 m (6.6')
				12-Feb-2016	12-Feb-2016	12-Feb-2016	12-Feb-2016	12-Feb-2016	11-Feb-2016	11-Feb-2016	11-Feb-2016	11-Feb-2016
Physical Parameters												
pН	pH Units	-	-	6.8	60	8.4	9.6	96	7.2	6.3	78	8 2
Metals												
Antimony	µg/g	20	20	2.0	0.4	144	1.4	1.4	10	08	12.4	60.6
Arsenic	µg/g	15 ^{#1}	15 ^{#1}	76	1.9	326	4 9	5.1	4 2	53	27.5	133
Barium	µg/g	400 #1	400 ^{#1}	93.9	35 6	89 6	75.4	84.7	70 2	115	108	144
Beryllium	µg/g	4	4	0.3	<0.1	0.2	0.2	0 2	0.2	0.3	03	0 2
Cadmium	µg/g	1 5-3 ^{#1,2}	1 5-3 ^{#1,2}	0.18	0.11	0.40	0.11	0.13	0 23	0.10	0 33	0.72
Chromium	µg/g	60 ^{#1}	60 ^{#1}	121	7	26	21	22	24	24	22	32
Cobalt	µg/g	50	50	10 5	16	19.1	6.7	73	7.7	10.4	96	19.2
Copper	µg/g	150 ^{#1,2}	150 ^{#1,2}	27.9	9.7	182	29.0	33.7	23.2	41.3	42 2	250
Lead	µg/g	250-400 ^{#1,2}	250-400 ^{#1,2}	10.0	5.2	175	17.6	16.6	31 6	11.3	33.0	111
Mercury	µg/g	15 ^{#1}	15 ^{#1}	0.05	0 02	0.01	0.02	0 03	0 04	0.03	0 04	0.11
Molybdenum	µg/g	10	10	1.0	15	26.2	1.1	1.0	09	08	3.3	25.9
Nickel	µg/g	100	100	37 6	86	13.3	13 2	17.2	23.3	21 5	18.6	17.2
Selenium	µg/g	3	3	0.2	0 2	0.2	0.1	<0.1	0.2	<0.1	0 2	0 2
Silver	µg/g	20	20	<0 5	<0.5	<0.5	<0 5	<0.5	<0.5	<0 5	<0 5	<0.5
Thallium	µg/g	-	-	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Tin	µg/g	50	50	0.9	08	17.5	0.9	1.1	2.7	0.6	2.4	92
Uranium	µg/g	16 ^{#2}	16 ^{#2}	06	0.4	0.7	0.4	0.5	0.3	05	0.5	1.0
Vanadium	µg/g	200	200	51	9	47	49	51	48	62	55	45
Zinc	µg/g	150-450 ^{#1,2}	150-450 ^{#1,2}	63	36	538	54	69	78	115	124	764
Laboratory Work Order Number		16V068853	16V068853	16V068853	16V068853	16V068853	16V068853	16V068853	16V068853	16V068853		
Laboratory Identification Number				7389744	7389753	7389734	7389757	7389756	7389718	7389721	7389722	7389728

NOTES

^{#1} CSR Schedule 5 substance. #2 Standard pH Dependent. Values shown based on site pH range of 6 0 to 9.6 #3 CSR Schedule 10 Substance. Not analyzed or no CSR standard exists. < Concentration is less than the laboratory detection limit indicated. CSR BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 4/2014 - January 31, 2014 - Schedules 4, 5 and 10). ΡL Park Land Standards RL Residential Land Standards Site specific soil factors include: - Intake of contaminated soil. - Toxicity to soil invertebrates and plants. - Groundwater used for drinking water. - Groundwater flow to surface water used by freshwater and marine aquatic life. -Groundwater used for irrigation. Most stringent applicable site specific factor is shown. Bold Bold and shaded indicates an exceedance of the CSR Standard

Table 2c: Soil Analytical Results - Volatile Organic Compounds

				16BH01	16BH02	00BH02	16ETP07	16TP13
Parameter	Unit	CSR - PL	CSR - RL	1.2 m (4')	1.2 m (4')	1.2 m (4')	0.5 m (1.6')	2.0 m (6.6')
				12-Feb-2016	12-Feb-2016	12-Feb-2016	11-Feb-2016	11-Feb-2016
BTEXS & MTBE								
Benzene	µg/g	0.04 #1	0.04 #1	<0.02	<0.02	<0.02	<0.02	<0.02
Toluene	µg/g	1.5 ^{#1}	1.5 ^{#1}	0.12	<0.05	<0.05	<0.05	<0.05
Ethylbenzene	µg/g	1 ^{#1}	1 ^{#1}	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene (m)	µg/g	-	-	<0.05	<0.05	<0.05	<0.05	<0.05
Xylene (o)	µg/g	-	-	<0.05	<0.05	<0.05	<0.05	<0.05
Xylenes Total	µg/g	5 ^{#1}	5 ^{#1}	<0.2	<0.2	<0.2	<0.2	<0.2
Styrene	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
МТВЕ	µg/g	320 #2	320 ^{#2}	<0.1	<0.1	<0.1	<0.1	<0.1
Volatile Organic Compounds (VOCs)					•			
1,1,1,2-tetrachloroethane	µg/g	32 ^{#2}	32 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,1-trichloroethane	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2,2-tetrachloroethane	µg/g	4.1 ^{#2}	4.1 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
1,1,2-trichloroethane	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-dichloroethane	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
1,1-dichloroethene	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
1,2,4-trichlorobenzene	µg/g	-	-	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-d bromoethane	µg/g	0.32 #2	0.32 #2	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-dichlorobenzene	µg/g	1	1	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-dichloroethane	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
1,2-dichloropropane	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
1,3-dichlorobenzene	µg/g	1	1	<0.05	<0.05	<0.05	<0.05	<0.05
1,4-dichlorobenzene	µg/g	1	1	<0.05	<0.05	<0.05	<0.05	<0.05
Methyl Ethyl Ketone	µg/g	22,000 #2	22,000 ^{#2}	<0.5	<0.5	<0.5	<0.5	<0.5
4-Methyl-2-pentanone	µg/g	5300 ^{#2}	5300 ^{#2}	<0.5	<0.5	<0.5	<0.5	<0.5
Acetone	µg/g	14,000 #2	14,000 ^{#2}	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	µg/g	8.2 ^{#2}	8.2 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
Bromoform	µg/g	620 ^{#2}	620 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
Bromomethane	µg/g	3.9 ^{#2}	3.9 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
Carbon tetrachloride	µg/g	5	5	<0.02	<0.02	<0.02	<0.02	<0.02
Chlorobenzene	µg/g	1	1	<0.05	<0.05	<0.05	<0.05	<0.05
Dibromochloromethane	µg/g	11 ^{#2}	11 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
Chloroethane	µg/g	30 #2	30 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
Chloroform	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
Chloromethane	µg/g	47 ^{#2}	47 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
cis-1,2-dichloroethene	µg/g	0.1 #2	0.1 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
cis-1,3-dichloropropene	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
Dichloromethane	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
Trichloroethene	µg/g	0.015 ^{#1}	0.015 ^{#1}	<0.01	<0.01	<0.01	<0.01	<0.01
Tetrachloroethene	µg/g	5 #1	5 ^{#1}	<0.05	<0.05	<0.05	<0.05	<0.05
trans-1,2-dichloroethene	µg/g	0.1 #2	0.1 #2	<0.05	<0.05	<0.05	<0.05	<0.05
trans-1,3-dichloropropene	µg/g	5	5	<0.05	<0.05	<0.05	<0.05	<0.05
Trichlorofluoromethane	µg/g	390 ^{#2}	390 ^{#2}	<0.05	<0.05	<0.05	<0.05	<0.05
Vinyl chloride	µg/g	0.79 #2	0.79 #2	<0.05	<0.05	<0.05	<0.05	<0.05
Laboratory Work Order Number				16V068853	16V068853	16V068853	16V068853	16V068853
Laboratory Identification Number				7389744	7389749	7389750	7389724	7389728

Notes:

#1
#2
-
<
CSR
PL
RL
Site specific soil factors include:

CSR Schedule 5 substance.

CSR Schedule 10 Substance.

Not analyzed or no CSR standard exists.

 $\label{eq:concentration} \mbox{ Concentration is less than the laboratory detection limit indicated}.$

BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 4/2014 - January 31, 2014 - Schedules 4, 5 and 10). Park Land Standards

Residential Land Standards

- Intake of contaminated soil.

- Toxicity to soil invertebrates and plants.

- Groundwater used for drinking water.

- Groundwater flow to surface water used by freshwater and marine aquatic life.

-Groundwater used for irrigation.

Most stringent applicable site specific factor is shown.

Bold and shaded indicates an exceedance of the CSR Standard

Parameter	Unit	CSR - AW	CSR - DW	MW16-01	MW16-02	MW16-05 (Duplicate)	MW16-03	MW16-04	
				19-Feb-2016	18-Feb-2016	18-Feb-2016	18-Feb-2016	18-Feb-2016	
Hydrocarbons									
EPH ₁₀₋₁₉	µg/L	5000	5000	140	<100	<100	<100	<100	
EPH ₁₉₋₃₂	µg/L	-	-	1260	<100	<100	240	<100	
LEPH	µg/L	500	-	140	<100	<100	<100	<100	
HEPH	µg/L	-	-	1260	<100	<100	240	<100	
Polycyclic Aromatic Hydrocarbons (PAHs)									
Acenaphthene	µg/L	60	-	0.15	<0.05	<0.05	0.06	<0.05	
Acenaphthylene	µg/L	-	-	0.06	<0.05	<0.05	<0.05	<0.05	
Acridine	µg/L	0.5	-	<0.05	<0.05	<0.05	<0.05	<0.05	
Anthracene	µg/L	1	-	0.18	<0.05	<0.05	0.08	<0.05	
Benz(a)anthracene	µg/L	1	-	0.30	<0.05	<0.05	0.15	<0.05	
Benzo(a)pyrene	µg/L	0.1	0.01	<u>0.34</u>	0.01	<u>0.02</u>	<u>0.18</u>	0.01	
Benzo(b)fluoran hene	µg/L	-	-	0.30	<0.05	<0.05	0.15	<0.05	
Benzo(b+j)fluoranthene	µg/L	-	-	0.50	<0.1	<0.1	0.20	<0.1	
Benzo(g,h,i)perylene	µg/L	-	-	0.24	<0.05	<0.05	0.12	<0.05	
Benzo(j)fluoranthene	ug/L	-	-	0.17	<0.05	<0.05	0.09	<0.05	
Benzo(k)fluoranthene	µg/L	-	-	0.15	<0.05	<0.05	0.08	<0.05	
Chrysene	µg/L	1	-	0.39	<0.05	<0.05	0.20	<0.05	
Dibenz(a,h)anthracene	µg/L	-	-	0.06	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/L	2	-	0.67	<0.05	<0.05	0.39	<0.05	
Fluorene	µg/L	120	-	0.09	<0.05	<0.05	0.06	<0.05	
Indeno(1,2,3-c,d)pyrene	µg/L	-	-	0.18	<0.05	<0.05	0.10	<0.05	
Naphthalene	µg/L	10	-	1.25	<0.05	<0.05	0.11	<0.05	
Phenanthrene	µg/L	3	-	0.42	<0.05	<0.05	0.30	<0.05	
Pyrene	μg/L	0.2	-	0.67	<0.02	0.03	0.38	<0.02	
Quinoline	μg/L	34	-	<0.1	<0.1	<0.1	<0.1	<0.1	
Laboratory Work Order Number				16V070252	16V070252	16V070252	16V070252	16V070252	
Laboratory Identification Number				7397648	7397646	7397647	7397645	7397640	

Table 3a: Groundwater Analytical Results - Hydrocarbons

NOTES:

EPHw	Extractable Petroleum Hydrocarbons in Water			
LEPH/HEPH	Light/Heavy Extractable Petroleum Hydrocarbons			
-	Not analyzed or no CSR standard exists.			
<	Concentra ion is less than the laboratory detection limit indicated.			
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 4/2014 - January 31, 2014 - Schedule 6).			
AW	Freshwater and Marine Aqua ic Life Standards			
DW	Drinking Water Standards			
Shading	Shading indicates an exceedence of the applicable CSR AW standards.			
Bold	Bold indicates an exceedance of the applicable CSR DW standards.			

Parameter	Unit	CSR - AW	CSR - DW	MW16-01	MW16-02	MW16-05 (Duplicate)	MW16-03	MW16-04		
				19-Feb-2016	18-Feb-2016	18-Feb-2016	18-Feb-2016	18-Feb-2016		
Physical Parameters	Physical Parameters									
pН	pH Units	-	-	7.71	7 69	7 68	7.50	7.76		
Hardness as CaCO ₃	µg/L	-	-	583,000	126,000	128,000	286,000	167,000		
Dissolved Metals				•						
Aluminum	µg/L	-	9500	9	11	10	8	6		
Antimony	µg/L	200	6	0 9	4.7	4.8	23.4	1.1		
Arsenic	µg/L	50	10	20.4	0.5	0.5	2.8	0 8		
Barium	µg/L	5000	1000	227	28.2	29.0	102	35.4		
Beryllium	µg/L	53	-	0.01	<0.01	<0.01	<0.01	<0 01		
Boron	µg/L	50,000	5000	76	21	21	55	32		
Cadmium	µg/L	0 5-1.3 ^{#1}	5	0.06	0 01	<0.01	0.02	0.02		
Calcium	µg/L	-	-	151,000	43,300	44,000	98,500	57,100		
Chromium	µg/L	10 #2	50	<0.5	<0.5	<0.5	<0 5	<0.5		
Cobalt	µg/L	40	-	14.0	0 20	0.19	2.00	0.10		
Copper	µg/L	20 #1	1000	09	8.0	8.6	1.7	58		
Iron	µg/L	-	- #4	3420	13	12	174	<10		
Lead	µg/L	20 #1	10	0.11	<0.05	<0.05	<0.05	<0 05		
Lithium	µg/L	-	730	5 5	<0.5	<0.5	<0 5	<0.5		
Magnesium	µg/L	-	100,000	50,100	4440	4490	9670	6050		
Manganese	µg/L	-	- #4	1290	19	20	1430	9		
Molybdenum	µg/L	10,000	250	2.95	4 60	4.42	22.1	1.92		
Nickel	µg/L	83	-	19.6	0.8	0.8	1.6	0 6		
Potassium	µg/L	-	-	10,100	6960	7110	7130	6030		
Selenium	µg/L	10	10	19	<0.5	<0.5	0.7	<0.5		
Silver	µg/L	15 ^{#1}	-	<0 02	<0.02	<0.02	<0.02	<0 02		
Sodium	µg/L	-	200,000	87,300	1860	1870	15,600	4290		
Thallium	µg/L	3	-	0.02	<0.01	<0.01	0.01	<0 01		
Titanium	µg/L	1000	-	4 3	1.1	1.0	1.8	10		
Uranium	µg/L	1000	20	2.62	0 31	0 32	1.77	0.28		
Vanadium	µg/L	-	-	1 0	2.1	2.3	1.3	1 5		
Zinc	μg/L	100 #1	-	12	<2	<2	4	<2		
Laboratory Work Order Number				16V070252	16V070252	16V070252	16V070252	16V070252		
Laboratory Identification Number	7397648	7397646	7397647	7397645	7397640					

Table 3b: Groundwater Analytical Results - Metals

NOTES

#1	Standard varies with hardness. Values shown based on site hardness range of 126 mg/L to 583 mg/L
#2	Standard is for Chromium VI.
#3	CSR Schedule 10 Substance.
#4	Stage 8 Amendment of the CSR applies.
-	Not analyzed or no CSR standard exists.
<	Concentration is less than the laboratory detection limit indicated.
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 4/2014 - January 31, 2014 - Schedules 6 and 10).
AW	Freshwater and marine Aquatic Life Standards, most stringent standard shown.
DW	Drinking Water Standards
Shading	Shading indicates an exceedence of the applicable CSR AW standards.
Bold	Bold indicates an exceedance of the applicable CSR DW standards.

Table 3c: Groundwater Analytical Results - Volatile Organic Compounds

Parameter	Unit	CSR - AW	CSR - DW	MW16-01	MW16-02	MW16-05 (Duplicate)	MW16-03	MW16-04	
				19-Feb-2016	18-Feb-2016	18-Feb-2016	18-Feb-2016	18-Feb-2016	
BTEXS & MTBE		-				-		-	
Benzene	µg/L	1000	5	<0.5	<0.5	<0.5	-	-	
Toluene	µg/L	390	24	<0.5	<0.5	<0.5	-	-	
Ethylbenzene	μg/L	2000	2.4	<0.5	<0.5	<0.5	-	-	
Xylene (m)	µg/L	-	-	<0.5	<0.5	<0.5	-	-	
Xylene (o)	μg/L	-	-	<0.5	<0.5	<0.5	-	-	
Xylenes Total	μg/L	-	300	<1	<1	<1	-	-	
Styrene	µg/L	720	-	<0.5	<0.5	<0.5	-	-	
МТВЕ	µg/L	4400	15	<1	<1	<1	-	-	
/olatile Organic Compounds (VOCs)									
1,1,1,2-tetrachloroethane	μg/L	-	26 ^{#1}	<1	<1	<1	-	-	
1,1,1-trichloroethane	μg/L	-	10,000 ^{#1}	<1	<1	<1	-	-	
1,1,2,2-tetrachloroethane	μg/L	-	3.4 ^{#1}	<1	<1	<1	-	-	
1,1,2-trichloroethane	μg/L	-	12 ^{#1}	<1	<1	<1	-	-	
1,1-dichloroethane	μg/L	-	3700 #1	<1	<1	<1	-	-	
1,1-dichloroethene	μg/L	-	14	<1	<1	<1	-	-	
1,2,4-trichlorobenzene	μg/L	54	-	<1	<1	<1	-	-	
1,2-d bromoethane	μg/L	-	0.34 #1	<0.3	<0.3	<0.3	-	-	
1,2-dichlorobenzene	μg/L	7	3	<0.5	<0.5	<0.5	-	-	
1,2-dichloroethane	μg/L	1000	5	<1	<1	<1	-	-	
1,2-dichloropropane	μg/L	-	9.9 ^{#1}	<1	<1	<1	-	-	
1,3-dichlorobenzene	µg/L	1500	-	<0.5	<0.5	<0.5	-	-	
1,4-dichlorobenzene	μg/L	260	1	<0.5	<0.5	<0.5	-	-	
Methyl Ethyl Ketone	µg/L	-	22,000 ^{#1}	<10	<10	<10	-	-	
4-Methyl-2-pentanone	μg/L	-	2900 ^{#1}	<10	<10	<10	-	-	
Acetone	μg/L	-	33,000 ^{#1}	<10	<10	<10	-	-	
Bromodichloromethane	μg/L	-	16	<1	<1	<1	-	-	
Bromoform	μg/L	-	100	<1	<1	<1	-	-	
Bromomethane	μg/L	-	51 ^{#1}	<1	<1	<1	-	-	
Carbon tetrachloride	μg/L	130	5	<0.5	<0.5	<0.5	-	-	
Chlorobenzene	μg/L	13	30	<1	<1	<1	-	-	
Dibromochloromethane	µg/L	-	100	<1	<1	<1	-	-	
Chloroethane	μg/L	-	46 ^{#1}	<1	<1	<1	-	-	
Chloroform	μg/L	20	100	<1	<1	<1	-	-	
Chloromethane	μg/L	-	950 ^{#1}	<1	<1	<1	-	-	
cis-1,2-dichloroethene	μg/L	-	370 #1	<1	<1	<1	-	-	
cis-1,3-dichloropropene	μg/L	-	6.7 ^{#1,2}	<1	<1	<1	-	-	
Dichloromethane	μg/L	980	50	<1	<1	<1	-	-	
Trichloroethene	μg/L	200	5	<1	<1	<1	-	-	
Tetrachloroethene	μg/L	1100	30	<1	<1	<1	-	-	
Trihalomethanes	μg/L	-	-	<2	<2	<2	-	-	
trans-1,2-dichloroethene	μg/L	-	730 ^{#1}	<1	<1	<1	-	-	
trans-1,3-dichloropropene	μg/L	-	6.7 ^{#1,2}	<1	<1	<1	-	-	
Trichlorofluoromethane	μg/L	-	11,000 #1	<1	<1	<1	-	-	
Vinyl chloride	µg/L	-	2	<1	<1	<1	-	-	
Laboratory Work Order Number		-		16V070252	16V070252	16V070252	16V070252	16V070252	
Laboratory Identification Number				7397648	7397646	7397647	7397645	7397640	

NOTES:

#1	CSR Schedule 10 Substance.
#2	Standard is for 1,3-dichloropropene
-	Not analyzed or no CSR standard exists.
<	Concentration is less than the laboratory detection limit indicated.
CSR	BC Contaminated Sites Regulation (BC Reg. 375/96, includes amendments up to B.C. Reg. 4/2014 - January 31, 2014 - Schedules 6 and 10).
AW	Freshwater and Marine Aquatic Life Water Use, most stringent standard shown
DW	Drinking Water Use
Shading	Shading indicates an exceedence of the applicable CSR AW standards.
Bold	Bold indicates an exceedance of the applicable CSR DW standards.

Table 4: Soil Quality Assurance/Quality Control Analytical Results

Parameter			16BH02	00BH02		16BH04	00BH04		
	Unit	RDL	1.2 m (4')	1.2 m (4')	RPD (%)	1.2 m (4')	1.2 m (4')	RPD (%)	
			12-Fe	b-2016		12-Fel	o-2016		
Hydrocarbons									
EPH ₁₀₋₁₉	µg/g	20	-	-	-	<20	<20	-	
EPH ₁₉₋₃₂	µg/g	20	-	-	-	56	149	-	
LEPH	µg/g	20	-	-	-	<20	<20	-	
HEPH	µg/g	20	-	-	-	56	148	-	
Polycyclic Aromatic Hydrocarbons (PAHs)									
1-Methylnaphthalene	µg/g	0.01	-	-	-	<0.01	0.01	-	
2-methylnaphthalene	µg/g	0.01	-	-	-	<0.01	0.01	-	
Acenaphthene	µg/g	0.01	-	-	-	<0.01	0.01	-	
Acenaphthylene	µg/g	0.01	-	-	-	0.03	0.20	-	
Anthracene	µg/g	0.02	-	-	-	<0.02	0.11	-	
Benz(a)anthracene	µg/g	0.02	-	-	-	0.03	0.23	-	
Benzo(a)pyrene	ug/g	0.05	-	-	-	<0.05	0.23	-	
Benzo(b)fluoranthene	µg/g	0.02	-	-	-	0.03	0.22	-	
Benzo(b+j)fluoranthene	µg/g	0.03	-	-	-	0.03	0.33	-	
Benzo(g,h,i)perylene	µg/g	0.05	-	-	-	<0.05	0.29	-	
Benzo(j)fluoranthene	µg/g	0.02	-	-	-	<0.02	0.11	-	
Benzo(k)fluoranthene	µg/g	0.02	-	-	-	<0.02	0.10	-	
Chrysene	µg/g	0.05	-	-	-	<0.05	0.25	-	
Dibenz(a,h)anthracene	µg/g	0.02	-	-	-	<0.02	0.05	-	
Fluoranthene	µg/g	0.05	-	-	-	0.06	0.47	-	
Fluorene	µg/g	0.02	-	-	-	<0.02	0.03	-	
Indeno(1,2,3-c,d)pyrene	µg/g	0.02	-	-	-	0.02	0.17	-	
Naphthalene	µg/g	0.01	-	-	-	0.01	0.03	-	
Phenanthrene	µg/g	0.02	-	-	-	0.04	0.14	-	
Pyrene	µg/g	0.02	-	-	-	0.06	0.35	-	
Physical Parameters	•					•			
рН	pH Units	0.1	-	-	-	9.6	9.6	0	
Metals	•				•	•			
Antimony	µg/g	0.1	-	-	-	1.4	1.4	0	
Arsenic	µg/g	0.1	-	-	-	4.9	5.1	4	
Barium	µg/g	0.5	-	-	-	75.4	84.7	12	
Beryllium	µg/g	0.1	-	-	-	0.2	0.2	-	
Cadmium	µg/g	0.01	-	-	-	0.11	0.13	17	
Chromium	µg/g	1	-	-	-	21	22	5	
Cobalt	µg/g	0.1	-	-	-	6.7	7.3	9	
Copper	µg/g	0.2	-	-	-	29.0	33.7	15	
Lead	µg/g	0.1	-	-	-	17.6	16.6	6	
Mercury	µg/g	0.01	-	-	-	0.02	0.03	-	
Molybdenum	µg/g	0.2	-	-	-	1.1	1.0	10	
Nickel	µg/g	0.5	-	-	-	13.2	17.2	26	
Selenium	µg/g	0.1	-	-	-	0.1	<0.1	-	
Silver	hð\ð	0.5	-	-	-	<0.5	<0.5	-	
Thallium	µg/g	0.1	-	-	-	<0.1	<0.1	-	
Tin	µg/g	0.2	-	-	-	0.9	1.1	-	
Uranium	µg/g	0.2	-	-	-	0.4	0.5	-	
Vanadium	µg/g	1	-	-	-	49	51	4	
Zinc	µg/g	1	-	-	-	54	69	24	

Table 4: Soil Quality Assurance/Quality Control Analytical Results

		RDL	16BH02	00BH02		16BH04	00BH04	
Parameter	Unit		1.2 m (4')	1.2 m (4')	RPD (%)	1.2 m (4')	1.2 m (4')	RPD (%)
			12-Fe	o-2016		12-Fe	b-2016	
BTEXS & MTBE								
Benzene	µg/g	0.02	<0.02	<0.02	-	-	-	-
Toluene	µg/g	0.05	<0.05	<0.05	-	-	-	-
Ethylbenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-
Xylene (m)	µg/g	0.05	<0.05	<0.05	-	-	-	-
Xylene (o)	µg/g	0.05	<0.05	<0.05	-	-	-	-
Xylenes Total	µg/g	0.2	<0.2	<0.2	-	-	-	-
Styrene	µg/g	0.05	<0.05	<0.05	-	-	-	-
МТВЕ	µg/g	0.1	<0.1	<0.1	-	-	-	-
Volatile Organic Compounds (VOCs)								•
1,1,1,2-tetrachloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,1,1-trichloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,1,2,2-tetrachloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,1,2-trichloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,1-dichloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,1-dichloroethene	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,2,4-trichlorobenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,2-d bromoethane	µg/g	0.05	< 0.05	<0.05	-	-	-	-
1,2-dichlorobenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,2-dichloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,2-dichloropropane	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,3-dichlorobenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-
1,4-dichlorobenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-
Methyl Ethyl Ketone	µg/g	0.5	<0.5	<0.5	-	-	-	-
4-Methyl-2-pentanone	µg/g	0.5	<0.5	<0.5	-	-	-	-
Acetone	µg/g	0.5	<0.5	<0.5	-	-	-	-
Bromodichloromethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
Bromoform	µg/g	0.05	< 0.05	<0.05	-	-	-	-
Bromomethane	µg/g	0.05	< 0.05	<0.05	-	-	-	-
Carbon tetrachloride	µg/g	0.02	<0.02	<0.02	-	-	-	-
Chlorobenzene	µg/g	0.05	<0.05	<0.05	-	-	-	-
Dibromochloromethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
Chloroethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
Chloroform	µg/g	0.05	<0.05	<0.05	-	-	-	-
Chloromethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
cis-1,2-dichloroethene	µg/g	0.05	<0.05	<0.05	-	-	-	-
cis-1,3-dichloropropene	µg/g	0.05	<0.05	<0.05	-	-	-	-
Dichloromethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
Trichloroethene	µg/g	0.01	<0.01	<0.01	-	-	-	-
Tetrachloroethene	µg/g	0.05	<0.05	<0.05	-	-	-	-
trans-1,2-dichloroethene	µg/g	0.05	<0.05	<0.05	-	-	-	-
trans-1,3-dichloropropene	µg/g	0.05	<0.05	<0.05	-	-	-	-
Trichlorofluoromethane	µg/g	0.05	<0.05	<0.05	-	-	-	-
Vinyl chloride	µg/g	0.05	<0.05	<0.05	-	-	-	-
Laboratory Work Order Number			16V068853	16V068853		16V068853	16V068853	
Laboratory Identification Number			7389749	7389750		7389757	7389756	

NOTES:

<

|--|

Laboratory Reportable Detection Limit

Concentration is less than the laboratory detection limit indicated.

RDL

RPD

BOLD

RPD is Relative Percentage Difference calculated as RPD=[C2-C1]/[(C1+C2)/2] where C1,C2 = concentrations of parameters in 1st and 2nd sample respective RPDs have only been considered where a concentration is greater than 5 times the RDL

High RPDs are in bold (acceptable RPD is 45% for metals in soil [60% for high variability metals] 75% for PAHs in soil, and 60% for EPH and other organics in soil as recommended by BC Ministry of Environment Q&A, and BC Environmental Laboratory Manual).

High variability metals include: Ag, Al, Ba, Hg, K, Mo, Na, Pb, Sn, Sr, and Ti

Table 5: Groundwater Quality Assurance/Quality Control Analytical Results

Parameter	Unit	RDI	MW16-02	MW16-05	RPD (%)
	Onit	NDE	18-Fel	b-2016	
Hydrocarbons					
EPH ₁₀₋₁₉	µg/L	100	<100	<100	-
EPH ₁₉₋₃₂	µg/L	100	<100	<100	-
LEPH	µg/L	100	<100	<100	-
HEPH	µg/L	100	<100	<100	-
	ug/l	0.05	<0.05	<0.05	_
Acenaphthylene	μg/L μg/l	0.05	<0.05	<0.05	-
Acridine	µg/L	0.05	<0.05	<0.05	_
Anthracene	μg/L	0.05	<0.05	<0.05	-
Benz(a)anthracene	µg/L	0.05	<0.05	<0.05	-
Benzo(a)pyrene	µg/L	0.01	0.01	0.02	-
Benzo(b)fluoranthene	µg/L	0.05	<0.05	<0.05	-
Benzo(b+j)fluoranthene	µg/L	0.1	<0.1	<0.1	-
Benzo(g,h,i)perylene	µg/L	0.05	<0.05	<0.05	-
Benzo(j)fluoranthene	ug/L	0.05	<0.05	< 0.05	-
Benzo(k)fluoranthene	µg/L	0.05	<0.05	< 0.05	-
Chrysene	µg/L	0.05	<0.05	<0.05	-
	µg/∟	0.05	<0.05	<0.05	-
Fluorene	μg/L	0.05	<0.05	<0.05	-
Indeno(1,2,3-c.d)pvrene	ua/L	0.05	<0.05	<0.05	-
Naphthalene	µg/L	0.05	<0.05	<0.05	_
Phenanthrene	μg/L	0.05	<0.05	<0.05	-
Pyrene	μg/L	0.02	<0.02	0.03	-
Quinoline	µg/L	0.1	<0.1	<0.1	-
Physical Parameters					
рН	pH Units	0.01	7.69	7.68	0.1
Hardness as CaCO ₃	μg/L	100	126,000	128,000	1.6
Dissolved Metals				10	
Aluminum	µg/L	2	11	10	9.5
	µg/L	0.2	4.7	4.8	2.1
Barium	μg/L	0.1	28.2	29.0	2.8
Bervllium	μg/L	0.2	<0.01	<0.01	-
Boron	µg/_ µg/L	2	21	21	0.0
Cadmium	μg/L	0.01	0.01	<0.01	-
Calcium	µg/L	50	43,300	44,000	1.6
Chromium	µg/L	0.5	<0.5	<0.5	-
Cobalt	µg/L	0.05	0.20	0.19	-
Copper	µg/L	0.2	8.0	8.6	7.2
Iron	µg/L	10	13	12	-
Lead	µg/L	0.05	<0.05	<0.05	-
Lithium	µg/L	0.5	<0.5	<0.5	-
Magazoso	µg/L	50	4440	4490	I.I 5 1
Molybdenum	μ <u>μ</u> γμ μα/Ι	0.05	4 60	20 <u>4</u> 42	<u>ع</u> اد الم
Nickel	ua/L	0.2	0.8	0.8	
Potassium	µa/L	50	6960	7110	2.1
Selenium	μg/L	0.5	<0.5	<0.5	-
Silver	μg/L	0.02	<0.02	<0.02	-
Sodium	µg/L	50	1860	1870	0.5
Thallium	μg/L	0.01	<0.01	<0.01	-
Titanium	µg/L	0.5	1.1	1.0	-
Uranium	µg/L	0.01	0.31	0.32	3.2
Vanadium	µg/L 	0.5	2.1	2.3	-
	μg/L	2	<2	<2	-
BIEXS & MIBE	110/1	0.5	~0 E	~0 E	1
	μg/L	0.5	<u>~0.5</u>	~U.D ~0 5	-
Ethylbenzene	μg/L μα/Ι	0.5	<0.5	<0.5 <0.5	
Xvlene (m)	µy/∟ ua/l	0.5	<0.5	<0.5	-
Xylene (o)	ua/L	0.5	<0.5	<0.5	-
Xylenes Total	µa/L	1	<1	<1	-
Styrene	μg/L	0.5	<0.5	<0.5	-
МТВЕ	μg/L	1	<1	<1	-

Boromotor	l Incit	PDI	MW16-02	MW16-05	
Falanielei	Onit	KDL	18-Fe	b-2016	KPD (%)
Volatile Organic Compounds (VOCs)					
1,1,1,2-tetrachloroethane	µg/L	1	<1	<1	-
1,1,1-trichloroethane	µg/L	1	<1	<1	-
1,1,2,2-tetrachloroethane	µg/L	1	<1	<1	-
1,1,2-trichloroethane	µg/L	1	<1	<1	-
1,1-dichloroethane	µg/L	1	<1	<1	-
1,1-dichloroethene	µg/L	1	<1	<1	-
1,2,4-trichlorobenzene	µg/L	1	<1	<1	-
1,2-dibromoethane	µg/L	0.3	<0.3	<0.3	-
1,2-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-
1,2-dichloroethane	µg/L	1	<1	<1	-
1,2-dichloropropane	µg/L	1	<1	<1	-
1,3-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-
1,4-dichlorobenzene	µg/L	0.5	<0.5	<0.5	-
Methyl Ethyl Ketone	µg/L	10	<10	<10	-
4-Methyl-2-pentanone	µg/L	10	<10	<10	-
Acetone	µg/L	10	<10	<10	-
Bromodichloromethane	µg/L	1	<1	<1	-
Bromoform	µg/L	1	<1	<1	-
Bromomethane	µg/L	1	<1	<1	-
Carbon tetrachloride	µg/L	0.5	<0.5	<0.5	-
Chlorobenzene	µg/L	1	<1	<1	-
Dibromochloromethane	µg/L	1	<1	<1	-
Chloroethane	µg/L	1	<1	<1	-
Chloroform	µg/L	1	<1	<1	-
Chloromethane	µg/L	1	<1	<1	-
cis-1,2-dichloroethene	µg/L	1	<1	<1	-
cis-1,3-dichloropropene	µg/L	1	<1	<1	-
Dichloromethane	µg/L	1	<1	<1	-
Trichloroethene	µg/L	1	<1	<1	-
Tetrachloroethene	µg/L	1	<1	<1	-
Trihalomethanes	µg/L	2	<2	<2	-
trans-1,2-dichloroethene	µg/L	1	<1	<1	-
trans-1,3-dichloropropene	µg/L	1	<1	<1	-
Trichlorofluoromethane	μg/L	1	<1	<1	-
Vinyl chloride	µg/L	1	<1	<1	-
Laboratory Work Order Number			16V070252	16V070252	
Laboratory Identification Number	7397646	7397647			

Table 5: Groundwater Quality Assurance/Quality Control Analytical Results

NOTES:

-	Not analyzed or RPD not calculated.
<	Concentration is less than the laboratory detection limit indicated.
RDL	Laboratory Reportable Detection Limit
RPD	RPD is Relative Percentage Difference calculated as RPD=[C2-C1]/[(C1+C2)/2] where C1,C2 = concentrations of parameters in 1st and 2nd sample respectively.
	RPDs have only been considered where a concentration is greater than 5 times the RDL
BOLD	High RPDs are in bold (groundwater metals were compared against a 30% screening threshold and groundwater VOCs and other organics were compared to a 45% screening threshold. as recommended by BC Ministry of Environment Q&A, and BC Environmental Laboratory Manual).

FIGURES

	Figure 1	Property Location Plan
--	----------	------------------------

- Figure 2 Sampling Locations and Areas of Potential Environmental Concern
- Figure 3 Soil Analytical Results
- Figure 4 Groundwater Analytical Results
- Figure 5 Groundwater Elevation Contours February 18, 2016

Q:\VarcouvenGIS'ENVIRONMENTAL\VENVV3059-01\Maps?Phase2\VENV03059-01_Figure01_SiteLccation.mxd modified 3/3/2016 by morgan.zondervan

(xx.xx) Groundwater Elevation on February 18, 2016

3/4/20

STATUS ISSUED FOR USE

						Phone Phone I and		
PROJEC UTM Zon	ROJECTION TM Zone 10			DATUM NAD83		CLIENT City of		
	Scale: 1:500					Vancouver		
10	5	0		10				
Metres								
FILE NO	059-01_Figur	e05_GW	/Conto	urs.mxd		TE TRA TECH EBA		
PROJECT NO. DWN ENV.VENV03059-01 MEZ OFFICE DATE Tt EBA-VANC March		DWN CKD A MEZ SL		APVD	REV			
				DT	0	Eiguro 5		
		DATE March	4, 2010	6		Figure 5		

APPENDIX A TETRA TECH EBA'S GENERAL CONDITIONS

GEOENVIRONMENTAL REPORT

This report incorporates and is subject to these "General Conditions".

1.0 USE OF REPORT AND OWNERSHIP

This report pertains to a specific site, a specific development, and a specific scope of work. It is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site or proposed development would necessitate a supplementary investigation and assessment.

This report and the assessments and recommendations contained in it are intended for the sole use of Tetra Tech EBA's client. Tetra Tech EBA does not accept any respons bility for the accuracy of any of the data, the analysis or the recommendations contained or referenced in the report when the report is used or relied upon by any party other than Tetra Tech EBA's Client unless otherwise authorized in writing by Tetra Tech EBA. Any unauthorized use of the report is at the sole risk of the user.

This report is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of Tetra Tech EBA. Additional copies of the report, if required, may be obtained upon request.

2.0 ALTERNATE REPORT FORMAT

Where Tetra Tech EBA submits both electronic file and hard copy versions of reports, drawings and other project-related documents and deliverables (collectively termed Tetra Tech EBA's instruments of professional service), only the signed and/or sealed versions shall be considered final and legally binding. The original signed and/or sealed version archived by Tetra Tech EBA shall be deemed to be the original for the Project.

Both electronic file and hard copy versions of Tetra Tech EBA's instruments of professional service shall not, under any circumstances, no matter who owns or uses them, be altered by any party except Tetra Tech EBA. The Client warrants that Tetra Tech EBA's instruments of professional service will be used only and exactly as submitted by Tetra Tech EBA.

Electronic files submitted by Tetra Tech EBA have been prepared and submitted using specific software and hardware systems. Tetra Tech EBA makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

3.0 NOTIFICATION OF AUTHORITIES

In certain instances, the discovery of hazardous substances or conditions and materials may require that regulatory agencies and other persons be informed and the client agrees that notification to such bodies or persons as required may be done by Tetra Tech EBA in its reasonably exercised discretion.

4.0 INFORMATION PROVIDED TO TETRA TECH EBA BY OTHERS

During the performance of the work and the preparation of the report, Tetra Tech EBA may rely on information provided by persons other than the Client. While Tetra Tech EBA endeavours to verify the accuracy of such information when instructed to do so by the Client, Tetra Tech EBA accepts no respons bility for the accuracy or the reliability of such information which may affect the report.

		NX-	Testpit No: 16TP05											
		CITY OF	Project Phase Environmental	Site	Asse	ssment	Project No.	ENV VENV03059-01	0					
		VANCOLIVER	Location 3010 East Kent Avenu	e So	outh									
		VAINCOUVER	Vancouver British Columbia		aur									
(.				8		3		0						
Depth (m)	Method	Soi Description		Sample Type	Sample Number	■Vapour readi	ngs (ppmv) ■ 3 4	Notes and Comments	Depth (ft)					
0	Excavation	SAND (F LL) some gravel trace silt trace organics (ro structure poorly graded sand and gravel moist dark medium to coarse subangular to subrounded gravel organic odour throughout END OF TESTP T (120 me res) Note Stopped due to refusal on concrete Excavated a trench 10 m south of star ing point Co metres below ground	orts) trace cobbles no visible brown medium angular sand cobbles to 150 mm diameter natural ontinued to hit refusal on concrete 1 2		509		3 4	Samp e 5 0.9 ana yzed for LEPH/HEPH, PAH and meta s	0 1 2 3 - 4 - 5 - 6 - - - - - - - - - - - - - - - -					
3		~		L				an an true caracteria de la composición	<u> </u>					
C	-		Contractor Backhoes Unlimited	ļ			Completion	Depth 12m						
	r.	TETRA TECH EBA	Drilling Rig Type Backhoe			Start Date 2016 February 11								
	C	A REAL PROPERTY OF THE REAL	Logged By DT				Completion Date 2016 February 11							
_	-		Reviewed By CF				Page 1 of 1							

		NX -	Testpit No:	16	6T	P06				
		CITY OF	Project Phase Environmental	Site	Asse4	ssment	Project No.	ENV/ VENV03059-01	ŝ	
		VANCOLIVER	Location 3010 East Kent Avenu	e Sc	uth	Jointon	i lojoot no		1	
		VAINCOUVER	Vancouver British Columbia	0.00	aur					
(<mark></mark>			Valiceaver Briter Columbia			5			8	
Depth (m)	Method	Soi Description		Sample Type	Sample Number	■ Vapour readi	ings (ppmv) ■	Notes and Comments	Depth (ft)	
- 1	Excavat on	SAND (F LL) gravelly race silt race organics race to graded sand and gravel moist brown no visible fore and gravel boulders to 600 mm diameter no discern of the structure medium to coarse sand fine to coart	oulder no visible structure poorly ign material medium to coarse sand ible odour wn no visible foreign material no rse gravel no discernible odour		6 1 0I 6 1 2I			Samp e 6 1.2 ana yzed for LEPH/HEPH, PAH and meta s	1 2 3 4	
- 2		END OF TESTP T (1 50 me res) Note Stopped due to refusal on concrete							56 67 89	
3		-		L						
F			Contractor Backhoes Unlimited				Completion Start Date C	Depth 15 m		
	5	TETRA TECH EBA	Logged By DT				Start Date 2016 February 11			
			Reviewed By CF	E Page 1 of 1						
			i toriorioù by Or				i ugo i ui i			

\$		N	Testpit No:	1(ŝТ	P07			7	
		ANY OF	Project Phase Environmenta	Cito	Accor	amont	Project No.	ENIX VENIV02050 01		
		X CITY OF	Project Phase Environmental	Site	Asses	ssment	Project No	ENV VENV03039-01		
		VANCOUVER	Location 3010 East Kent Aven	le So	outh					
			Vancouver British Columbia	8 - 8				-	-	
Depth (m)	Method	Soi Description		Sample Type	Sample Number	■ Vapour readi	ngs (ppmv) ■ 3 4	Notes and Comments	Depth (ft)	
- 1	Excavat on	SAND (F LL) silty trace gravel trace organic woody m visible structure brown medium to coarse poorly gra subrounded sand natural organic odour throughout from 0 95 to 1 40 m some gravel cobbles to 400 mr S LT (F LL) sandy trace organics trace cobble moist fine subrounded grey sand subangular cobbles no o	aterial (roots) trace cobble no aded gravel medium subangular to m diameter brown no visible foreign material discemible odour		705			Samp e 7 0.5 ana yzed for LEPH/HEPH, PAH and meta s	2-	
-2		GRAVEL (F LL) sandy race silt trace cobble no visib grey no visible foreign material fine to coarse angula sand cobbles to 100 mm diameter no discernible of END OF TESTP T (2 00 me res)	e structure well graded gravel wet ar to subangular gravel subangular lour		718			Samp e 7 1.8 ana yzed for VOC	6 7 8	
C			Contractor Backhoes Unlimited				Completion	Depth 2 m		
	R.	TETRA TECH EBA	Drilling Rig Type Backhoe				Start Date 2016 February 11			
		a second s	Logged By DT				Completion Date 2016 February 11			
			Reviewed By CF				Page 1 of 1			

		X	Testpit No:	1(6T	P13			
		CHTY OF	Project Phase Environmental	Sito	Accor	emont	Project No.		
			Froject Fridse Environmental	Sile	ASSE	Sinen	FIDJECTINO	LINV VEINV03039-01	
		VANCOUVER	Location 3010 East Kent Avenu	le So	utn				
			Vancouver British Columbia	8 8					
o Depth (m)	Method	Soi Description		Sample Type	Sample Number	■ Vapour readi	ngs (ppmv) ■ 3 4	Notes and Comments	Depth (ft)
1	Excavat on	SAND AND GRAVEL (F LL) no visible structure well g visible foreign material coarse to medium sand ine gravel to 80 mm diameter no discernible odour	praded gravel moist light grey no to coarse subangular to rounded						1- 2- 3- 4-
- 2		ASPHALT SAND (F LL) gravelly race silt race organics no visi gravel brown some dark s aining no visible foreign coarse subangular to rounded gravel hydrocarbon or END OF TESTP T (2 60 me res)	ble structure well graded sand and material fien to coarse sand ine to dour noted from 2 00 to 2 40 metres		13 21			Samp e 13 2 ana yzed for LEPH/HEPH, PAH, VOCs and meta s	6- 7- 8- 9-
3			Contractor Backhoes Unlimited				Completion I	Depth 26 m	52
	TETRA TECH FRA Drilling Rig Type Backhoe						Start Date 2	016 February 11	
	U		Logged By DT	Completion Date 2016 February 11					
5	-		Reviewed By CF				Page 1 of 1		

ENVIRONMENTAL ENV-VENV03059-01.GPJ EBA.GDT 16/3/4

		NOT	Borehole	N	lo:	B	H/N	/16-01						
		CITY OF	Project Phase Environ	menta	al Site	Asse	ssment		Project No ENV VENV03059-01					
		VANCOUVER	Location 3010 East Kent	Aver	nue S	outh								
		VAILEOUVER	Vancouver British Colum	bia										
Depth (m)	Method	Soi Description	1	Sample Type	Sample Number			diasa (sa		Notes and Comments	-	Depth (ft)		
0						Va	1 2	aings (pp 3	4			0		
		SAND (F LL) gravelly no visible structure poorly grade visible foreign material medium sand well graded co gravel hydrocarbon odour noted at 0 60 me res	ed sand moist grey no barse subangular to rounded		11					P pe st ckup = 0.79 metres above ground surface		1		
1 2 <u>▼</u>	tem auger	from 1 50 to 1 80 m trace silt race woody debris he blue creosote from wood S LT (FLUV AL) some sand poorly graded homogene no visible foreign material no discernible odour	omogeneous wet black to ous moist to wet grey blue		14 15					Samp e 1 4 ana yzed for LEPH/HEPH, PAH, VOC and meta s				
930 on Feb18/16	So d s											9 30 on Feb 18/16		
4		END OF BORFHOLE (3.96 me res)			1 12							11- 12- 13-		
6		slough from 3 05 to 3 96 metres below ground surface water 2 07 metres below ground surface at 9 30 on F Monitoring well installed from 1 22 to 3 05 metres belo	ebruary 18 2016 w ground surface									14		
			1									30 31 32		
-	Contractor Omega Drill							pletion Depth 3 96 m						
-	r L	TETRA TECH EBA	Drilling Rig Type M5T MARL TECH Track Rig						Start Date 2016 February 12					
	C		Logged By DT	Logged By DT						Completion Date 2016 February 12				
_	_	<i></i>	Reviewed By CF							Page 1 of 1				

5		NA-	Borehole	N	0	B	H/M	W16	-02				
		CITY OF	Project Phase Environm	menta	al Site	Asse	ssment	Proje	ct No ENV VENV03059-01				
		VANCOLIVER	Location 3010 East Kent	Aver	nue S	outh							
		VANCOUVER	Vancouver British Colum	bia									
			Variouver Britan Colum		er	6							
Depth (m)	Method	Soi Description		Sample Type	Sample Numb				Notes and Comments	Π	Depth (ft)		
0			ual maint light group as			V	apour readin	ngs (ppmv) 3 4	Des stelue = 0.79		0		
		visible foreign material ine to coarse subangular to r diameter medium to coarse sand creosote odour to	rounded gravel to 80 mm 1 50 me res	0	21				metres above ground surface		1		
					24				Samp e 2 4 ana yzed for VOC	• • • • •	. 4		
eb18/16		from 1 50 to 4 00 m trace silt race organics organic creosote odour throughout	c odour no discernible						Dr er reports refusa 1.5 metres be ow ground surface, moved 1.5 m south.		eb18/16		
111111111111 8 1340 on F	auger				28						13 40 on F		
4	So d stem	UNNATURAL WOODY MATER AL AND SAWDUST (F throughout	LL) brown creosote odour		2 13						12 13 14 15 16		
		at 58 m s rong creosote odour			2 17				Samp e 2 17 ana yzed for LEPH/HEPH, PAH and meta s		17- 18- 19-		
- 6 		S LT (FLUV AL) trace sand homogeneous wet blue g material fine sand no discernible odour at 6 55 m 75 mm thick sand lens homogeneous po fine sand no discernible odour	grey no visible foreign porly graded wet blue grey			****					20 21 22		
- 7 		at 7 01 m 75 mm thick sand lens homogeneous po fine sand no discernible odour at 7 31 m 75 mm thick sand lens homogeneous po fine sand no discernible odour	corly graded wet blue grey		2 23						23 24 25		
8		END OF BOREHOLE (7 62 me res) slough from 2 90 to 7 62 metres below ground surface water 1 79 metres below ground surface at 13 40 on Monitoring well installed from 1 07 to 2 90 metres belo	February 18 2016 w ground surface								26 27 28		
9											29 30 31		
- 10		~											
			Contractor Omega Drillin	g				Com	bletion Depth 7 62 m				
		TETRA TECH EBA	Drilling Rig Type M5T M/	ype M5T MARL TECH Track Rig					Start Date 2016 February 12				
								Com	Dietion Date 2016 February 12				
			Reviewed By CF					Page	1011				

		NO-	Borehole	N	0:	B	H/	M	W16	-03				
		CITY OF	Project Phase Environn	nenta	al Site	Asse	ssment		Projec	Project No ENV VENV03059-01				
		VANCOLIVER	Location 3010 East Kent	Aver	nue So	outh								
		TAILCOOTER	Vancouver British Colum	bia										
(* <u>***</u> **	_			be	nber				I					
(m)	Method	Soi Description		Sample Ty	Sample Nur					Notes and Comments	7	Depth (ft)		
0		0001100	and a state of black			■ Va	apour re 1 2	ading	s (ppmv)			0		
Ē		ORGAN CS sand trace silt roots homogeneous poort fine to medium sand natural organic odour	y graded moist to wet black		31					P pe st ckup = 0.84 metres above ground surface	<u> </u>	1-		
Ē	ger	SAND (F LL) gravelly race organics brick piece no vis	sible structure well graded		32							2		
1	m au	mm diameter	ided to angular graver to ou		335	leses				Samp e 3 3.5 ana yzed for LEPH/HEPH, PAH		3		
Ē	w ste	from 1 37 to 1 43 m dark staining hydrocarbon odour			345					and meta s	•••••	5		
191	Hoo	SAND (F LL) silty some gravel no visible structure mo material fine to medium sand fien to coarse angular	ist brown no visible foreign		2.20							1 ⁶		
Feb16		mm diameter no discernible odour from 2 29 to 4 27 m, woody debris appearing in layer	creosote odour, refusal at		375							Feb16		
2 45 on	_	2.5 m (possible concrete or asphalt) from 2.60 to 3.05 m grey blue fine sand								Refusa at 2.5 m. Sw tched to so d stem	•	2 45 on		
3	auger	from 3 05 to 4 27 m moist to wet subrounded to roun	ded gravel		395 310					auger and cont nued dr ng.		10		
E	tem a											11		
Ē.	sp og											12		
4	0					53458				•		- 14		
5		slough from 3 05 to 4 27 metres below ground surface water 1 82 metres below ground surface at 12 45 on F Monitoring well installed from 1 22 to 3 05 metres below Note Stopped due to auger refusal at 4 27 me res below	ebruary 16 2016 v ground surface w ground surface									15 16 17		
6						waa ka ka ka						18 19 20		
												21 22		
-7							0					23 24 25		
8												26		
9												28 29 30		
10											31 32			
6	Contractor Omega Drilling								Comp	Completion Depth 4 27 m				
	t.	TETRA TECH EBA	Drilling Rig Type M5T MA	/5T MARL TECH Track Rig					Start	Start Date 2016 February 12				
	C		Logged By DT						Comp	Completion Date 2016 February 12				
			Reviewed By CF	Page 1 of 1										

ENVIRONMENTAL ENV-VENV03059-01.GPJ EBA.GDT 16/3/4

		NA	Borehole	Ν	lo:	BH/	MW	V16-04				
		CITY OF	Project Phase Environ	ment	al Site	Assessmen	nt	Project No ENV VENV03059-01				
		VANCOUVER	Location 3010 East Kent	t Ave	nue S	outh						
		WITCOOTER	Vancouver British Colum	nbia								
Depth (m)	Method	Soi Description		Sample Type	Sample Number	Vapour	eadings (pr		Notes and Comments	-	Depth (ft)	
0						1	2 3	4	B		0	
		SAND (F LL) some gravel poorly graded sand no visi no visible foreign material fine to medium sand well subangular to rounded gravel no discernible odour	ole s ructure very wet grey graded fine to medium		411				P pe st ckup = 0.79 metres above ground surface	<u>.</u>	1 2 3	
	rger	SAND AND GRAVEL (F LL) no visible structure well g visible foreign materials possible luvial deposits mix graded medium sand well graded fine to coarse ang hydrocarbon odour throughout	raded moist grey blue no ed with fill material poorly ular to rounded gravel slight		44				Samp e 4 4 ana yzed for LEPH/HEPH, PAH and meta s		4 5- ₩6	
0 11 25 on Feb18/1	So d stem au	SAND (F LL) and woody material race gravel no visit wet grey possible fluvial deposi s mixed with fill mal well graded fine to course subrounded to rounded gra natural organic odour	erial fine to medium sand avel to 50 mm diameter		48						11 25 on Feb18/1	
4		S LT (FLUV AL) some sand trace clay trace organic w homogeneous moist to wet grey poorly graded fine	woody material sand no discernible odour		<mark>4 13</mark> 1	-					10 11 12 13 14	
		END OF BOREHOLE (4 57 me res) slough from 2 90 to 4 57 metres below ground surface water 1 86 metres below ground surface at 11 25 on Monitoring well installed from 1 07 to 2 90 metres belo	February 18 2016 w ground surface								15- 16- 17- 18- 19- 19- 19- 19- 19- 20- 19- 21- 22- 23- 24- 24- 24- 25-	
9											26 27 28 29 30 30 31 31 32	
- 10	Contractor Orace Drill					<u> </u>	8 8	Come	lation Donth 4 57			
F	Contractor Omega Drilli				TECH	Track Rig		Start	Date 2016 February 12			
				NOT MARE LEGIT HACK RIG					Completion Date 2016 February 12			
			Reviewed By CF					Page	1 of 1	ę.		
								, age				

CLIENT NAME: TETRA TECH EBA INC 1066 WEST HASTINGS ST. 9TH FLOOR VANCOUVER, BC V6E3X2 (604) 685-0017

ATTENTION TO: JELENA SLADOJEVIC

PROJECT: ENV.VENV03059

AGAT WORK ORDER: 16V068853

SOIL ANALYSIS REVIEWED BY: Andrew Garrard, B.Sc., General Manager

TRACE ORGANICS REVIEWED BY: Andrew Garrard, B.Sc., General Manager

DATE REPORTED: Feb 19, 2016

PAGES (INCLUDING COVER): 26

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

*NOTES

VERSION 1: Sample receipt temperature 3°C.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 26

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accredita ions are location and parameter specific. A complete listing of parameters for each loca ion is available from www.cala.ca and/or www.scc.ca. The tests in his report may not necessarily be included in the scope of accredita ion.

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 16V068853 PROJECT: ENV.VENV03059

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

			E	British Colur	nbia Metals	Schedule 4 a	and 5				
DATE RECEIVED: 2016-02-13								[DATE REPORTI	ED: 2016-02-19	
Durandar	11-3	SAMPLE DES SAMI DATE S	CRIPTION: PLE TYPE: SAMPLED:	16NTP05-0.9 Soil 2/11/2016	16NTP06-1.2 Soil 2/11/2016	16ETP07-0.5 Soil 2/11/2016	16TP13-2 Soil 2/11/2016	16BH03-3.5 Soil 2/12/2016	16BH01-4 Soil 2/12/2016	16BH02-17 Soil 2/12/2016	00BH04-4 Soil 2/12/2016
Parameter	Unit	G/S	RDL	1.0	7389721	1389722	7389728	/ 389/ 34	7389744	7389753	/389/56
Anumony	µg/g		0.1	1.0	0.0	12.4	122	144	2.0	0.4	1.4
Arsenic	µg/g		0.1	4.2	0.0 115	27.5	133	320	7.0	1.9	5.1 94.7
Benyllium	µg/g		0.5	0.2	0.3	0.3	144	0.2	93.9	-0 1	04.7
Cadmium	µg/g		0.01	0.2	0.5	0.3	0.2	0.2	0.18	<0.1 0.11	0.2
Chromium	P9/9		1	24	24	22	32	26	121	7	22
Cobalt	P9/9		01	77	10 4	9.6	10.2	10 1	10.5	16	73
Copper	µ9/9 ua/a		0.1	23.2	41.3	42.2	250	182	27.9	9.7	33.7
Lead	49/9 ua/a		0.1	31.6	11.3	33.0	111	175	10.0	5.2	16.6
Mercury	µ9/9		0.01	0.04	0.03	0.04	0.11	0.01	0.05	0.02	0.03
Molybdenum	ua/a		0.2	0.9	0.8	3.3	25.9	26.2	1.0	1.5	1.0
Nickel	ua/a		0.5	23.3	21.5	18.6	17.2	13.3	37.6	8.6	17.2
Selenium	µg/g		0.1	0.2	<0.1	0.2	0.2	0.2	0.2	0.2	<0.1
Silver	ua/a		0.5	<0.5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5
Thallium	ua/a		0.1	<0.1	<0.1	<0.1	0.1	0.1	<0.1	<0.1	<0.1
Uranium	ua/a		0.2	0.3	0.5	0.5	1.0	0.7	0.6	0.4	0.5
Tin	p/g		0.2	2.7	0.6	2.4	9.2	17.5	0.9	0.8	1.1
Vanadium	µg/q		1	48	62	55	45	47	51	9	51
Zinc	µg/g		1	78	115	124	764	538	63	36	69
pH 1:2	pH units		0.1	7.2	6.3	7.8	8.2	8.4	6.8	6.0	9.6

Certified By:

ander Carron

AGAT WORK ORDER: 16V068853 PROJECT: ENV.VENV03059

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

Unit 120, 8600 Glenlyon Parkway

Burnaby, British Columbia

http://www.agatlabs.com

CANADA V5J 0B6

TEL (778)452-4000 FAX (778)452-4074

SAMPLED BY:

	В	ritish Columb	a Metals Schedule 4 and 5
)2-13			DATE REPORTED: 2016-02-19
S	AMPLE DESCRIPTION: SAMPLE TYPE:	16BH04-4 Soil	
Linit	DATE SAMPLED:	2/12/2016	
	01	1 4	
µg/g	0.1	4.9	
µg/g µa/a	0.5	75.4	
µg/g	0.1	0.2	
µg/g	0.01	0.11	
µg/g	1	21	
µg/g	0.1	6.7	
µg/g	0.2	29.0	
µg/g	0.1	17.6	
µg/g	0.01	0.02	
µg/g	0.2	1.1	
µg/g	0.5	13.2	
µg/g	0.1	0.1	
µg/g	0.5	<0.5	
µg/g	0.1	<0.1	
µg/g	0.2	0.4	
µg/g	0.2	0.9	
µg/g	1	49	
µg/g	1	54	
pH units	0.1	9.6	
	2-13 Unit Unit Ug/g ug/g	2-13 SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: Unit G / S RDL µg/g 0.1 µg/g 0.5 µg/g 0.5 µg/g 0.1 µg/g 0.2 µg/g 0.2 µg/g 0.2 µg/g 1 µg/g 1 µg/g 1 µg/g <td< td=""><td>British Columbi SAMPLE DESCRIPTION: 16BH04-4 SAMPLE DESCRIPTION: 16BH04-4 SAMPLE TYPE: Soil DATE SAMPLED: 2/12/2016 Unit G / S RDL 7389757 µg/g 0.1 1.4 µg/g 0.1 4.9 µg/g 0.1 0.2 µg/g 0.1 0.2 µg/g 0.1 0.1 µg/g 0.1 0.1 µg/g 0.1 6.7 µg/g 0.1 17.6 µg/g 0.1 17.6 µg/g 0.1 0.1 µg/g 0.1 0.1 µg/g 0.1 0.1 µg/g 0.1 0.1 µg/g 0.2 0.1 µg/g 0.1 0.1</td></td<>	British Columbi SAMPLE DESCRIPTION: 16BH04-4 SAMPLE DESCRIPTION: 16BH04-4 SAMPLE TYPE: Soil DATE SAMPLED: 2/12/2016 Unit G / S RDL 7389757 µg/g 0.1 1.4 µg/g 0.1 4.9 µg/g 0.1 0.2 µg/g 0.1 0.2 µg/g 0.1 0.1 µg/g 0.1 0.1 µg/g 0.1 6.7 µg/g 0.1 17.6 µg/g 0.1 17.6 µg/g 0.1 0.1 µg/g 0.1 0.1 µg/g 0.1 0.1 µg/g 0.1 0.1 µg/g 0.2 0.1 µg/g 0.1 0.1

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7389718-7389744 Results are based on the dry weight of the sample

7389753 Results are based on the dry weight of the sample

Due to sample matrix, pH (1:2) was analyzed at a 1:20 soil to water ratio.

7389756-7389757 Results are based on the dry weight of the sample

ander Carron

Certified By:

AGAT WORK ORDER: 16V068853 PROJECT: ENV.VENV03059 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

				LEPH/HEP	PH Soil					
DATE RECEIVED: 2016-02-13							[DATE REPORTE	D: 2016-02-19	9
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	16NTP05-0.9 Soil 2/11/2016 7389718	16NTP06-1.2 Soil 2/11/2016 7389721	16ETP07-0.5 Soil 2/11/2016 7389722	16TP13-2 Soil 2/11/2016 7389728	16BH03-3.5 Soil 2/12/2016 7389734	16BH01-4 Soil 2/12/2016 7389744	RDL	16BH02-17 Soil 2/12/2016 7389753
Naphthalene	µg/g	0.01	<0.01	<0.01	0.01	0.15	<0.01	0.57	0.03	< 0.03
2-Methylnaphthalene	µg/g	0.01	<0.01	<0.01	0.01	0.04	0.01	0.10	0.03	<0.03
1-Methylnaphthalene	µg/g	0.01	<0.01	<0.01	0.01	0.02	<0.01	0.06	0.03	<0.03
Acenaphthylene	µg/g	0.01	<0.01	<0.01	0.01	0.02	0.02	0.02	0.03	<0.03
Acenaphthene	µg/g	0.01	<0.01	<0.01	<0.01	0.04	<0.01	0.08	0.03	<0.03
Fluorene	µg/g	0.02	<0.02	<0.02	<0.02	0.07	<0.02	0.08	0.06	<0.06
Phenanthrene	µg/g	0.02	<0.02	0.02	0.03	0.26	0.02	0.37	0.06	0.07
Anthracene	µg/g	0.02	<0.02	<0.02	<0.02	0.07	<0.02	0.11	0.06	<0.06
Fluoranthene	µg/g	0.05	<0.05	<0.05	0.07	0.30	<0.05	0.35	0.2	<0.2
Pyrene	µg/g	0.02	<0.02	<0.02	0.10	0.27	0.03	0.30	0.06	0.07
Benzo(a)anthracene	µg/g	0.02	<0.02	<0.02	0.02	0.07	0.03	0.06	0.06	<0.06
Chrysene	µg/g	0.05	<0.05	<0.05	< 0.05	0.10	<0.05	0.10	0.2	<0.2
Benzo(b)fluoranthene	µg/g	0.02	<0.02	<0.02	0.03	0.09	0.02	0.06	0.06	<0.06
Benzo(j)fluoranthene	µg/g	0.02	<0.02	<0.02	0.02	0.04	<0.02	0.03	0.06	<0.06
Benzo(k)fluoranthene	µg/g	0.02	<0.02	<0.02	0.02	0.04	<0.02	0.03	0.06	<0.06
Benzo(a)pyrene	µg/g	0.05	<0.05	<0.05	<0.05	0.10	<0.05	0.07	0.2	<0.2
Indeno(1,2,3-c,d)pyrene	µg/g	0.02	<0.02	<0.02	0.03	0.04	<0.02	0.04	0.06	<0.06
Dibenzo(a,h)anthracene	µg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.06	<0.06
Benzo(g,h,i)perylene	µg/g	0.05	<0.05	<0.05	<0.05	0.09	<0.05	0.05	0.2	<0.2
EPH C10-C19	µg/g	20	<20	21	<20	39	50	25	60	70
EPH C19-C32	µg/g	20	24	67	40	390	200	309	60	1440
LEPH C10-C19	µg/g	20	<20	21	<20	39	50	24	60	70
HEPH C19-C32	µg/g	20	24	67	39	390	200	308	60	1440
Benzo(b+j)fluoranthene	µg/g	0.03	<0.03	<0.03	0.05	0.13	<0.03	0.09	0.03	<0.03
Surrogate	Unit	Acceptable Limits								
Naphthalene - d8	%	50-130	74	94	75	65	74	75		88
2-Fluorobiphenyl	%	50-130	77	103	88	81	108	103		118
P-Terphenyl - d14	%	60-130	78	61	119	79	90	94		98

Certified By:

ander lamore

- - - -

AGAT WORK ORDER: 16V068853 PROJECT: ENV.VENV03059

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

				LEPH/HEPH	Soil
DATE RECEIVED: 2016-02-13	3				DATE REPORTED: 2016-02-19
	ç	SAMPLE DESCRIPTION:	00BH04-4	16BH04-4	
		SAMPLE TYPE:	Soil	Soil	
		DATE SAMPLED:	2/12/2016	2/12/2016	
Parameter	Unit	G/S RDL	7389756	7389757	
Naphthalene	hð/ð	0.01	0.03	0.01	
2-Methylnaphthalene	hð/ð	0.01	0.01	<0.01	
1-Methylnaphthalene	hð/ð	0.01	0.01	<0.01	
Acenaphthylene	hð/ð	0.01	0.20	0.03	
Acenaphthene	µg/g	0.01	0.01	<0.01	
Fluorene	hð/ð	0.02	0.03	<0.02	
Phenanthrene	hð/ð	0.02	0.14	0.04	
Anthracene	hð/ð	0.02	0.11	<0.02	
Fluoranthene	µg/g	0.05	0.47	0.06	
Pyrene	hð/ð	0.02	0.35	0.06	
Benzo(a)anthracene	µg/g	0.02	0.23	0.03	
Chrysene	hð/ð	0.05	0.25	<0.05	
Benzo(b)fluoranthene	µg/g	0.02	0.22	0.03	
Benzo(j)fluoranthene	hð/ð	0.02	0.11	<0.02	
Benzo(k)fluoranthene	µg/g	0.02	0.10	<0.02	
Benzo(a)pyrene	hð/ð	0.05	0.23	<0.05	
Indeno(1,2,3-c,d)pyrene	hð/ð	0.02	0.17	0.02	
Dibenzo(a,h)anthracene	µg/g	0.02	0.05	<0.02	
Benzo(g,h,i)perylene	µg/g	0.05	0.29	<0.05	
EPH C10-C19	hð/ð	20	<20	<20	
EPH C19-C32	µg/g	20	149	56	
LEPH C10-C19	hð/ð	20	<20	<20	
HEPH C19-C32	hð/ð	20	148	56	
Benzo(b+j)fluoranthene	hð/ð	0.03	0.33	0.03	
Surrogate	Unit	Acceptable Limits			
Naphthalene - d8	%	50-130	77	74	
2-Fluorobiphenyl	%	50-130	120	87	
P-Terphenyl - d14	%	60-130	90	87	

Certified By:

ander lamore

AGAT WORK ORDER: 16V068853 PROJECT: ENV.VENV03059

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

DATE RECEIVED: 2016-02-13

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

LEPH/HEPH Soil

DATE REPORTED: 2016-02-19

ander Cernorl

Unit 120, 8600 Glenlyon Parkway

Burnaby, British Columbia

http://www.agatlabs.com

CANADA V5J 0B6

TEL (778)452-4000 FAX (778)452-4074

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7389718-7389744 Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions.

7389753 Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions. EPH & PAH detection limits increased due to high sample moisture content.

7389756-7389757 Results are based on dry weight of sample. LEPH & HEPH results have been corrected for PAH contributions.

Certified By:

Page 6 of 26

AGAT WORK ORDER: 16V068853 PROJECT: ENV.VENV03059 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

Volatile Organic Compounds in Soil								
DATE RECEIVED: 2016-02-13								DATE REPORTED: 2016-02-19
		SAMPLE DESCRIPTION:	16ETP07-1.8	16TP13-2	16BH01-4	16BH02-4	00BH02-4	
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLED:	2/11/2016	2/11/2016	2/12/2016	2/12/2016	2/12/2016	
Parameter	Unit	G/S RDL	7389724	7389728	7389744	7389749	7389750	
Chloromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Bromomethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Chloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Trichlorofluoromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Acetone	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
1,1-Dichloroethene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Dichloromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Methyl tert-butyl ether (MTBE)	µg/g	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
2-Butanone (MEK)	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
trans-1,2-Dichloroethene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1-Dichloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
cis-1,2-Dichloroethene	µg/g	0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	
Chloroform	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,2-Dichloroethane	µg/g	0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	
1,1,1-Trichloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Carbon Tetrachloride	µg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Benzene	µg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
1,2-Dichloropropane	µg/g	0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	
Trichloroethene	µg/g	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Bromodichloromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
trans-1,3-Dichloropropene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
4-Methyl-2-pentanone (MIBK)	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
cis-1,3-Dichloropropene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2-Trichloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Toluene	µg/g	0.05	<0.05	<0.05	0.12	<0.05	<0.05	
Dibromochloromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylene Dibromide	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Tetrachloroethene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	

Certified By:

ander Cernorl

AGAT WORK ORDER: 16V068853 PROJECT: ENV.VENV03059 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

			volatile O	iganic com				
DATE RECEIVED: 2016-02-13								DATE REPORTED: 2016-02-19
		SAMPLE DESCRIPTION:	16ETP07-1.8	16TP13-2	16BH01-4	16BH02-4	00BH02-4	
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE SAMPLED:	2/11/2016	2/11/2016	2/12/2016	2/12/2016	2/12/2016	
Parameter	Unit	G/S RDL	7389724	7389728	7389744	7389749	7389750	
Chlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Ethylbenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
m&p-Xylene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Bromoform	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Styrene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,1,2,2-Tetrachloroethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
o-Xylene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,3-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,4-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,2-Dichlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
1,2,4-Trichlorobenzene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Total Xylenes	µg/g	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Surrogate	Unit	Acceptable Limits						
Bromofluorobenzene	%	60-140	82	78	84	94	90	
Dibromofluoromethane	%	60-140	102	98	104	106	93	
Toluene - d8	%	60-140	92	89	92	95	84	

Volatile Organic Compounds in Soil

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7389724-7389750 Results are based on dry weight of sample.

ander Cerrorel

Certified By:

Quality Assurance

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03059

SAMPLING SITE:

AGAT WORK ORDER: 16V068853 ATTENTION TO: JELENA SLADOJEVIC SAMPLED BY:

Soil Analysis

RPT Date: Feb 19, 2016			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		IKE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acce	eptable mits
		iù					value	Lower	Upper		Lower	Upper		Lower	Uppe
British Columbia Metals Schedule 4	and 5														
Antimony	7394433		0.3	0.3	NA	< 0.1	108%	70%	130%	105%	90%	110%			
Arsenic	7394433		3.0	2.9	5.5%	< 0.1	104%	70%	130%	104%	90%	110%			
Barium	7394433		68.6	65.8	4.2%	< 0.5	91%	70%	130%	105%	90%	110%			
Beryllium	7394433		0.2	0.2	NA	< 0.1	113%	70%	130%	109%	90%	110%			
Cadmium	7394433		0.12	0.11	3.8%	< 0.01	78%	70%	130%	102%	90%	110%			
Chromium	7394433		19	20	6.1%	< 1	112%	70%	130%	108%	90%	110%			
Cobalt	7394433		6.4	6.9	6.5%	< 0.1	109%	70%	130%	108%	90%	110%			
Copper	7394433		17.5	17.8	1.8%	< 0.2	104%	70%	130%	110%	90%	110%			
Lead	7394433		12.4	12.5	0.7%	< 0.1	103%	70%	130%	108%	90%	110%			
Mercury	7394433		0.03	0.03	NA	< 0.01	97%	70%	130%	96%	90%	110%			
Molybdenum	7394433		0.4	0.4	NA	< 0.2	113%	70%	130%	104%	90%	110%			
Nickel	7394433		14.5	15.1	4.5%	< 0.5	115%	70%	130%	109%	90%	110%			
Selenium	7394433		0.2	0.2	NA	< 0.1				103%	90%	110%			
Silver	7394433		<0.5	<0.5	NA	< 0.5				96%	90%	110%			
Thallium	7394433		<0.1	<0.1	NA	< 0.1	102%	70%	130%	104%	90%	110%			
Uranium	7394433		0.4	0.4	NA	< 0.2	117%	70%	130%	101%	90%	110%			
Tin	7394433		0.5	0.5	NA	< 0.2	118%	70%	130%	100%	90%	110%			
Vanadium	7394433		47	50	4.7%	< 1	112%	70%	130%	103%	90%	110%			
Zinc	7394433		39	39	0.5%	< 1	106%	70%	130%	98%	90%	110%			
pH 1:2	7394433		6.7	6.7	0.1%	< 0.1	100%	90%	110%	100%	95%	105%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

ander Cernorl

Page 9 of 26

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by he Canadian Association for Laboratory Accredita ion Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on he scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are loca ion and parameter specific. A complete lis ing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in he scope of accreditation.

Quality Assurance

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03059

SAMPLING SITE:

AGAT WORK ORDER: 16V068853 ATTENTION TO: JELENA SLADOJEVIC SAMPLED BY:

Trace Organics Analysis

						• • • • •									
RPT Date: Feb 19, 2016			C	UPLICATI	E		REFERENCE MATER		TERIAL	METHOD	IETHOD BLANK SPIKE			RIX SPIKE	
DADAMETED	Patab	Sample	Dup #1	Dup #2	PPD	Method Blank	Measured	Acce Lir	ptable nits	Boowary	Acceptable Limits		Boowary	Accep Lin	ptable nits
	Daten	ld	Dup #1	Dup #2	IN D		Value	Lower	Upper	litecovery	Lower	Upper	recovery	Lower	Upper
LEPH/HEPH Soil	1		1			1	1		1	1			1		
Naphthalene	65324	7391938	<0.01	<0.01	NA	< 0.01	103%	80%	120%				92%	50%	130%
2-Methylnaphthalene	65324	7391938	<0.01	<0.01	NA	< 0.01	103%	80%	120%				86%	50%	130%
1-Methylnaphthalene	65324	7391938	<0.01	<0.01	NA	< 0.01	103%	80%	120%				88%	50%	130%
Acenaphthylene	65324	7391938	<0.01	<0.01	NA	< 0.01	100%	80%	120%				84%	50%	130%
Acenaphthene	65324	7391938	<0.01	<0.01	NA	< 0.01	101%	80%	120%				91%	50%	130%
Fluorene	65324	7391938	<0.02	<0.02	NA	< 0.02	100%	80%	120%				88%	50%	130%
Phenanthrene	65324	7391938	<0.02	<0.02	NA	< 0.02	102%	80%	120%				85%	60%	130%
Anthracene	65324	7391938	<0.02	<0.02	NA	< 0.02	101%	80%	120%				84%	60%	130%
Fluoranthene	65324	7391938	<0.05	<0.05	NA	< 0.05	100%	80%	120%				85%	60%	130%
Pyrene	65324	7391938	<0.02	<0.02	NA	< 0.02	100%	80%	120%				87%	60%	130%
Benzo(a)anthracene	65324	7391938	<0.02	<0.02	NA	< 0.02	101%	80%	120%				81%	60%	130%
Chrysene	65324	7391938	<0.05	<0.05	NA	< 0.05	100%	80%	120%				83%	60%	130%
Benzo(b)fluoranthene	65324	7391938	<0.02	<0.02	NA	< 0.02	101%	80%	120%				91%	60%	130%
Benzo(j)fluoranthene	65324	7391938	<0.02	<0.02	NA	< 0.02	101%	80%	120%				93%	60%	130%
Benzo(k)fluoranthene	65324	7391938	<0.02	<0.02	NA	< 0.02	99%	80%	120%				84%	60%	130%
Benzo(a)pyrene	65324	7391938	<0.05	<0.05	NA	< 0.05	100%	80%	120%				85%	60%	130%
Indeno(1,2,3-c,d)pyrene	65324	7391938	<0.02	<0.02	NA	< 0.02	102%	80%	120%				86%	60%	130%
Dibenzo(a,h)anthracene	65324	7391938	<0.02	<0.02	NA	< 0.02	102%	80%	130%				81%	60%	130%
Benzo(g,h,i)perylene	65324	7391938	<0.05	<0.05	NA	< 0.05	102%	80%	120%				90%	60%	130%
Naphthalene - d8	65324	7391938	79	82	3.7%		100%	80%	120%				81%	50%	130%
2-Fluorobiphenyl	65324	7391938	91	67	30.4%		100%	80%	120%				85%	50%	130%
P-Terphenyl - d14	65324	7391938	90	121	29.4%		101%	80%	120%				85%	60%	130%
EPH C10-C19	65324	7391938	<20	<20	NA	< 20	103%	70%	130%				100%	65%	120%
EPH C19-C32	65324	7391938	<20	<20	NA	< 20	116%	70%	130%				95%	80%	120%
Comments: RPDs are calculated usin	ng raw ana	alytical data	and not the	e rounded	duplicate	values rep	orted.								
Volatile Organic Compounds in Soil															
Chloromethane	65324	7391941	<0.05	<0.05	NA	< 0.05	101%	80%	120%				88%	60%	140%
Vinyl Chloride	65324	7391941	<0.05	<0.05	NA	< 0.05	101%	80%	120%				77%	60%	140%
Bromomethane	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				92%	60%	140%
Chloroethane	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				83%	60%	140%
Trichlorofluoromethane	65324	7391941	<0.05	<0.05	NA	< 0.05	99%	80%	120%				84%	70%	130%
Acetone	65324	7391941	<0.5	<0.5	NA	< 0.5	99%	80%	120%				76%	70%	130%
1,1-Dichloroethene	65324	7391941	<0.05	<0.05	NA	< 0.05	99%	80%	120%				103%	70%	130%
Dichloromethane	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				88%	70%	130%
Methyl tert-butyl ether (MTBE)	65324	7391941	<0.1	<0.1	NA	< 0.1	99%	80%	120%				85%	70%	130%
2-Butanone (MEK)	65324	7391941	<0.5	<0.5	NA	< 0.5	99%	80%	120%				77%	70%	130%
trans-1,2-Dichloroethene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				94%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

65324 7391941 <0.05

1,1-Dichloroethane

AGAT Laboratories is accredited to ISO/IEC 17025 by he Canadian Association for Laboratory Accredita ion Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on he scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are loca ion and parameter specific. A complete lis ing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in he scope of accreditation.

NA

< 0.05

99% 80% 120%

< 0.05

Page 10 of 26

70% 130%

91%

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

Quality Assurance

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03059

SAMPLING SITE:

AGAT WORK ORDER: 16V068853 ATTENTION TO: JELENA SLADOJEVIC SAMPLED BY:

		Trace	Orga	anics A	Analy	/sis (Conti	nue	d)						
RPT Date: Feb 19, 2016			DUPLICATE				REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Accer Lin	ptable nits
		iu					value	Lower Upper		Lower	Upper	_	Lower	Upper	
cis-1,2-Dichloroethene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				88%	70%	130%
Chloroform	65324	7391941	<0.05	<0.05	NA	< 0.05	99%	80%	120%				92%	70%	130%
1,2-Dichloroethane	65324	7391941	<0.05	<0.05	NA	< 0.05	99%	80%	120%				88%	70%	130%
1,1,1-Trichloroethane	65324	7391941	<0.05	<0.05	NA	< 0.05	99%	80%	120%				97%	70%	130%
Carbon Tetrachloride	65324	7391941	<0.02	<0.02	NA	< 0.02	99%	80%	120%				99%	70%	130%
Benzene	65324	7391941	<0.02	<0.02	NA	< 0.02	99%	80%	120%				92%	70%	130%
1,2-Dichloropropane	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				88%	70%	130%
Trichloroethene	65324	7391941	<0.01	<0.01	NA	< 0.01	99%	80%	120%				95%	70%	130%
Bromodichloromethane	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				89%	70%	130%
trans-1,3-Dichloropropene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				87%	60%	140%
4-Methyl-2-pentanone (MIBK)	65324	7391941	<0.5	<0.5	NA	< 0.5	101%	80%	120%				73%	70%	130%
cis-1,3-Dichloropropene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				85%	60%	140%
1,1,2-Trichloroethane	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				85%	70%	130%
Toluene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				92%	70%	130%
Dibromochloromethane	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				86%	70%	130%
Ethylene Dibromide	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				84%	70%	130%
Tetrachloroethene	65324	7391941	<0.05	<0.05	NA	< 0.05	98%	80%	120%				116%	70%	130%
1,1,1,2-Tetrachloroethane	65324	7391941	<0.05	<0.05	NA	< 0.05	99%	80%	120%				101%	70%	130%
Chlorobenzene	65324	7391941	<0.05	<0.05	NA	< 0.05	99%	80%	120%				102%	70%	130%
Ethylbenzene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				103%	70%	130%
m&p-Xylene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				104%	70%	130%
Bromoform	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				91%	70%	130%
Styrene	65324	7391941	<0.05	<0.05	NA	< 0.05	101%	80%	120%				94%	70%	130%
1,1,2,2-Tetrachloroethane	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				89%	70%	130%
o-Xylene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				103%	70%	130%
1,3-Dichlorobenzene	65324	7391941	<0.05	<0.05	NA	< 0.05	99%	80%	120%				105%	70%	130%
1,4-Dichlorobenzene	65324	7391941	<0.05	<0.05	NA	< 0.05	99%	80%	120%				105%	70%	130%
1,2-Dichlorobenzene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				101%	70%	130%
1,2,4-Trichlorobenzene	65324	7391941	<0.05	<0.05	NA	< 0.05	100%	80%	120%				101%	70%	130%
Bromofluorobenzene	65324	7391941	75	81	7.7%		107%	60%	140%				99%	60%	140%
Dibromofluoromethane	65324	7391941	96	104	8.0%		98%	60%	140%				86%	60%	140%
Toluene - d8	65324	7391941	82	89	8.2%		99%	60%	140%				84%	60%	140%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

ander Cernorl

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by he Canadian Association for Laboratory Accredita ion Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on he scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are loca ion and parameter specific. A complete lis ing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in he scope of accreditation.

Page 11 of 26

Method Summary

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03059

AGAT WORK ORDER: 16V068853 ATTENTION TO: JELENA SLADOJEVIC

SAMPLING SITE:		SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE							
Soil Analysis		l								
Antimony	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Arsenic	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Barium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Beryllium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Cadmium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Chromium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Cobalt	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Copper	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Lead	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Mercury	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Molybdenum	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Nickel	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Selenium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Silver	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Thallium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Uranium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Tin	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Vanadium	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
Zinc	MET-181-6102, LAB-181-4008	BC MOE Lab Manual C (SALM) and EPA 6020A	ICP-MS							
pH 1:2	INOR-181-6031	BC MOE Lab Manual B (pH, Electrometric, Soil)	PH METER							

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03059

AGAT WORK ORDER: 16V068853 ATTENTION TO: JELENA SLADOJEVIC

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			•
Naphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
1-Methylnaphthalene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthylene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Acenaphthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluorene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Phenanthrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Chrysene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(b)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(j)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(k)fluoranthene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(a)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Indeno(1,2,3-c,d)pyrene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Dibenzo(a,h)anthracene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(g,h,i)perylene	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Naphthalene - d8	ORG-180-5102	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
2-Fluorobiphenyl	ORG-180-5102	modified from BC MOE Lab Manual Section D (PAH)	GC/MS
P-Terphenyl - d14	ORG-180-5102	modified from BC MOE Lab Manual Section D (PAH)	GC/MS
EPH C10-C19	ORG-180-5101	Modified from BCMOE Lab Manual Section D (EPH)	GC/FID
EPH C19-C32	ORG-180-5101	Modified from BCMOE Lab Manual Section D (EPH)	GC/FID
LEPH C10-C19	ORG-180-5101	Modified from BCMOE Lab Manual Section D (EPH)	GC/FID
HEPH C19-C32	ORG-180-5101	Modified from BCMOE Lab Manual Section D (EPH)	GC/FID
Chloromethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS

CLIENT NAME: TETRA TECH EBA INC PROJECT: ENV.VENV03059

AGAT WORK ORDER: 16V068853 ATTENTION TO: JELENA SLADOJEVIC

SAMPLING STL.		SAIVIF LED BT.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Vinyl Chloride	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Bromomethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Chloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Trichlorofluoromethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Acetone	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1-Dichloroethene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Dichloromethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Methyl tert-butyl ether (MTBE)	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
2-Butanone (MEK)	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
trans-1,2-Dichloroethene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1-Dichloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
cis-1,2-Dichloroethene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Chloroform	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,2-Dichloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1,1-Trichloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Carbon Tetrachloride	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Benzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,2-Dichloropropane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Trichloroethene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Bromodichloromethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
trans-1,3-Dichloropropene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
4-Methyl-2-pentanone (MIBK)	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
cis-1,3-Dichloropropene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1,2-Trichloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Toluene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Dibromochloromethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Ethylene Dibromide	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Tetrachloroethene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS

CLIENT NAME: TETRA TECH EBA INC PROJECT: ENV.VENV03059

SAMPLING SITE:

AGAT WORK ORDER: 16V068853 ATTENTION TO: JELENA SLADOJEVIC SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1,1,2-Tetrachloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Chlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Ethylbenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
m&p-Xylene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Bromoform	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Styrene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1,2,2-Tetrachloroethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
o-Xylene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,3-Dichlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,4-Dichlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,2-Dichlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,2,4-Trichlorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Bromofluorobenzene	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Dibromofluoromethane	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Toluene - d8	ORG-180-5103	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS

Chain of C	CAGGAT Sustody Record	Labo	oratories	120 · 8600 P: 778.452.4000	0 Glenlyon Park Burnaby V5J (•F: 778.452.4	way , BC 0B6 074 Laboratory Use O Arrival Temperature AGAT Job Number: Notes:	inly 3°C <u>16V068853</u>
Report Information Company: Te Contact: Ta Address: Voo Voo Phone: 177	Report Information Company: Telena Tech FRA Tac Contact: Telena Stadiojevic Address: 1000 - 10° FL 885 DUNSMUNST Vancascript Phone: 177 94558482 Fax: AGAT Quote #:			arcen Deos Turbor an Articulation deostrybr. Sladoin i c Sladoin i c Sladoin i c Sladoin i c Sladoin i c Sladoin i c	Report Forr Single Sample page Multiple Samples page	per Regular TAT 5 t Rush TAT 0a per 0ate Reguired:	Required (TAT) to 7 working days ty 2 - 100% ty 3 - 50% ty 4 - 25%
AGAT Quote #:			BC CSR Soli BC CSR - Water AL DW IL AW PL IW CL LW RL Schedule 11 (Please Specify) CCME (Please Specify)		Tel S	PLEASE CONTACT LA SUBMISSION CUT	BORATORY IF RUSH REQUIRED SAMPLE OFF FOR EFFECTIVE DATE BY 3 PM
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT	L/HE NeAo		VUMBER OF PRESERVED 1AZARDOUS
7389718	1611TPhS-019	1501	2/11/16		XX		
19	16NTP05+1.2	1					
20	IGN TROGELO	Sathadara		and the second			
21	14.1 TPO6-11.2	Sail+ Vac			XX		
22	16ETP07-0.5				XX		
23	16E T207 -114		1				
24	16ETP0-1-1.8	Salado			HX.		
25	ODETPO7-1.8	Sollaver					
26	16ETP 12- 2.6			The phil			
27	00ETP12 + 2.6			-			
28	MW1602-2*54104	1 Sail-Vac	-	Change Dank fo 16TP13-			
Semples Reincontrial By (Ph	GTP XX - D	Cates/Tarce	Samples Received by	ytProst Name and Servic	Osta/Tir	10	Page of
Sampto Petroparti (y 194	ni haite exo sent	Deta/Time	Samples Received By Samples Received By	rorms were and sign:	Deta/Tar Osta/Tar	ne	№ 017589

1 comerc #: DIV 186-1500.003

Chain of C	AGGA1 sustody Record	Labo	oratories	120 - 8600 P: 778.452.4000	0 Glenlyon Parkway Burnaby, BC V5J 086 • F: 778.452.4074	Laboratory Use Arrival Temperatu AGAT Job Number Notes:	Only re:			
Company: Contact: Address:	Company: Contact: Address: Phone: Fax:		Report information 1. Name: Email: 2. Name: Email:		Report Format Single Sample per page Multiple Samples per	t Turnaround Time Required (TAT) Regular TAT 5 to 7 working days Rush TAT Day 2 - 100% Day 3 - 50%				
Phone: AGAT Quote #: Client Project #	Phone: Fax: Fax: Game as above Yes C / No F			BC CSR - Water	Excel Format	Day 4 - 25% Date Required: PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLI SUBMISSION CUT OFF FOR EFFECTIVE DATE BY 3 PM ,				
Invoice To Same as above Yes / No Company:			Image: Constraint of the set of the se			Hals	DF CONTAINERS ED (Y/N) US (Y/N) 260 DAYS			
APCRATORY	SAMPLE IDENTIFICATION	SAMPLE (MATRIX	DATE/TIME SAMPLED.	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT			NUMBER PRESERVE HAZARDO			
30	16BHO2-23		2/12/16							
32	16 BH03-1		1		atterde					
33	16RH03-2	-	1010116		P. WAK					
34	168403-35	142	150			XX				
35	16R403 -45	Callie	(
36	16BH03-17	-	1	COSHON						
37	16,RH03 475	1	2	1% PH QIA		+++++				
32	OORHAZER	- DO AVE	10	IN RHOM						
39	1619403-8	Soil-Va		007440	1					
40	168H03-95	CAUR		16RHO		++++				
41	1614403410	DoileVal								
Samples inserval served by (Pre-	STORY WINK SIGTE	Data/Tena	Samples Received B	y Print Name and Signi	Clane/Time	5 m 1 m 1 m 1	Page of			
Serrores Reincouried By (Prox Name and Sup); Deby/Em Serrores Reincouring By (Pros Name and Sup); Deby/Em			Samples Received By (Print Name and Sign: Samples Hocenned By Print Name and Sagn:				№: 017591			

Document # Dev 156-1500-003

Chain of C		Burnaby, BC V5J 0B6 P: 778.452.4000 · F: 778.452.4074										
Donart Inform	ustody Record						ivotes:					
Report morm	ation		Report Information		Repor	Format					-	
Company:			1. Name:			ngle	Turnaround Time Required (TAT)					
Contact:			Email:			mple per ge	Regular TAT 05t	o 7 working da	ws			
Address:	1.0		2. Name: Email:		Multiple Samples per		Rush TAT Day 2 - 100%					
Phone:	Fax:		Requirements (Please Check)			Re	Da	y 4 - 25%				
AGAT Quote #:						cel Format	Date Required:	CONTORY IS DUCH	DECHIDE			
Client Project #	the state of the state			DW			SUBMISSION CUT	OFF FOR EFFECTIV	VE DATE B	Y 3 PM	PLE .	
Invoice To	Same as above Y	/es 🗆 / No 🗖										
Contact:	A DE T			ULW				the second second		-	1	
Address:			UKL									
			Schedule 11 (Please Specify)						ERS			
Phone:	Fax:		CCME (Please Specify)						TAIN	-	()	
PO/AFE#:	St. State		Other (Please Specify)		JAN SIE				DF CON	V/W di	1 09 E	
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT	Met-	Roc			NUMBER (PRESERVE	HazaRDOI	
43	16840-1		2/12/16							-	1	
44	12 HOJ=4	Saltyon			XX	X						
45	DORHOI-4	Son Hall						-		1	1	
46	16.8461-5	10.140			+++	+++					13	
47	16FH01-172	-	-		+ + +						1	
48	Nº RHO3 - 1	FAR			+	1+					-	
- 49	16 BH 02-4	DON HALL										
50	LI DUDD G	Dortung			+++	4				-	-	
57	V.P.U.O. Liz	Same									-	
.53	16 RH02-17	Giltyr	1		XX		4				-	
Samphas Resinguistrant by (Pro	re Name and SignX	Date/Time	Samples Received By	Prins Name and Segne 10001	1 44	Deux/Time		Parto	rd		-	
Santona Reansanced By (Pri	re Nama and Sept3	Classifiere	Winne to Suitan Grand by	ePhong Name and Sign):		Date/Time		No. O	175	0.0		
Serrows Reinquished by (Po	et Name and Signt	Dece/Time	Samples Received By	(Pret Name and Sept)		Delc/Time		. U.	112	30		

AGAT Job Wurthor 6 / C 6 8 5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(N/A) ENC (N/A) ENC (N/A) EDU SEBNIVINOD JO			Page - d	N17590
An Uby Roport Formet Roport Formet Simgle Simgle per Dege Samolies per performat	HE PH.				
Aboratories Praticology Prime Nation	Schedule 1 Hayro Second CCM Franci Concil O Hay research Second	IPLE DUTETTIME SWIMLED COMMENTS AND SAMPLE INTO. THIN A DUTETTIME SWIMLED SAMPLE IN STATINGTON AND 3/13/1/6		est Tuu Statutu Statutus Statutus	
Chain of Custody Racovd Insport Internation Provention Provesting Provesti	Phone: Fear: PO/AFE#:	userancian use luar Day SS 62404-1 Sal SS 002401-4 Sal ST 168404-4 Sal	59 DOLANI - 13 60 168404 - 13		

......

	aGai	0 Glenlyon Parkway Burnaby, BC V5J 0B6 • F: 778.452.4074	Laboratory Use Arrival Temperatu AGAT Job Number	Only re:3	۷						
Chain of	Custody Record		Notes:	FEB 13 AV715	58						
Report Inform	nation	AL A	Report Information	1	Report Format						
Company: Tetra Tech EBA Tac Contact: Telenci Stadojević Address: 1000 - 10 [™] FL 885 Dunsmuight Vancoused Phone: 1778 9455843 Fax:			1. Name: Lori 1 Email: Lori Lassi 2. Name: Jeleno Email: Jeleno	Larsen Dea Taylor en Ottinteducan deco. Taylor. Sladojevic Ottintechicom	Single Sample per page Multiple Samples per	Turnaround Time Required (TAT) Regular TAT 5 to 7 working days Rush TAT Day 2 - 100% Day 3 - 50%					
			Requirements (Plea	ase Check) BC CSR - Water DW	Excel Format Included	Date Required: PLEASE CONTACT L SUBMISSION CL	ABORATORY IF RUSH F JT OFF FOR EFFECTIVE	EQUIRED	QUIRED SAMPLE IATE BY 3 PM		
			IL IL IPL CL RL Schedule 11 (Please S) CCME (Please S)	AW IW LW pecify)				ONTAINERS	(N/)	0 DAYS	
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE IDENTIFICATION SAMPLE MATRIX DATE/TIME SAMPLED COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT		COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT				IUMBER OF C	RESERVED ()	Iold for: X6	
	6117DOS-09	Sall	2/11/16					2	a 1	Ħ	
	IGNTPOS-12	1	~ une							T	
	16 N TROG-10	Silver								T	
	16N TPOG - 1.2	Solavor								T	
	16ETP07-0.5									Γ	
	16E TP07 - 14										
	16ETP07-18	Soileva									
	00ETP07-1.8	Sollinte							_	1	
2000	16ETP12-2.6									1	
	00ETP12-2.6								-	-	
	MW 1602-2	Soil+Va		- A							
Samples Relinquished By (F	rint Name and Sign):	Date/Time	Samples Received a	WPrint Forme and Bign):	Date/Time		Page	of			
Samples Relinquisted By (P	Print Name and Sign):	Date/Time	Samples Received 8	y Print Name and Signi	Date/Time			-			
Samples Relincuished By (P	Print Name and Sign):	Date/Time	Samples Received 5	ly (Print Name and Sign):	Date/Tima		N°: 01	758	39		

Page 20 of 26

Chain of (Custody Record	Lab	oratories	P: 778.452.4000	•F: 778.452.4074	AGAT Job Nun Notes:	nber: FEB 13 ex	7159		-		
Report Inform	ation		Report Information		Report Format							
Company:			1. Name:		Single	Turnaround	Time Required (T/	AT)		-		
Contact:			Email:		page	Regular TAT	5 to 7 working da	ays				
Address:			2. Name:		Multiple	Rush TAT	□ Day 2 - 100%	5				
			Email:		Samples per		Day 3 - 50%					
Phone:	Fax:		Requirements (Plea	se Check)		Data Dagained	L) Day 4 - 25%					
AGAT Quote #:					Excel Format	Date Required:						
Client Project #:			BC CSR SOIL	BC CSR - Water		SUBMISSI	ON CUT OFF FOR EFFECTI	VE DATE B	SAMINA SAMI	I		
									T	-		
Invoice To	Same as above Y	res□/No□										
Company:												
Contact:												
Address:												
			Schedule 11 (Piease Sc	ecify)				ERS				
Phone:	Fax:		CCME (Please Sc	ecity)				IAINE		AVS		
PO/AFF#:			Other (Please Sc	ecity)				NON	N/N	N/N		
								OF (ED	SUC		
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT				NUMBER	PRESERV	HAZARD(Hold for:		
	16840-1		2/12/16							17		
	KRHO1-4	Sil+VE	1									
	NORHOI-4	SoilHac										
	16BH01-5	Soil+WCK										
	168H01-12											
	16 BHO2 - 1											
	16BH02-4	Soilmac										
	DODILOS 11	Saltor							1			
	UUSHO2-4								10.1			
	16 PHO2-8								-	-		
	16 PHO2-8 16 BHO2-13	Southac										
	16 PHO2-8 16 PHO2-8 16 BHO2-13 16 BHO2-17	Soil Hube Soil + Vice										
Samples Relinquated By (P	16 PHO2-9 16 PHO2-8 16 RHO2-13 16 RHO2-17 Int Name and Sign:	Soil Hoc Soil Y VOC	Samples Beaunger	(Print Name and Sight)	Date/Time		Page _	of	£			

Page 21 of 26

_____Fax:

Same as above Yes 2 / No 2

Fax:

SAMPLE

MATRIX

Solutre

cilevo:

Sollever

Date/Time

AGAT Quote #:

Laboratory Use Only 120 - 8600 Glenlyon Parkway 3.0 Burnaby, BC Arrival Temperature: V5J 0B6 AGAT Job Number: P: 778.452.4000 · F: 778.452.4074 Notes: FEB 13 m7:59 **Report Information Report Format** 1. Name: _____ Single **Turnaround Time Required (TAT)** □ Sample per Email: Regular TAT 5 to 7 working days page 2. Name: _____ Day 2 - 100% Rush TAT Multiple Email: □ Samples per Day 3 - 50% page 🗆 Day 4 - 25% Requirements (Please Check) Date Required: Excel Format Included BC CSR Soil PLEASE CONTACT LABORATORY IF RUSH REQUIRED SAMPLE SUBMISSION CUT OFF FOR EFFECTIVE DATE BY 3 PM BC CSR - Water DAL DW □ AW DPL **UIW** CL LW NUMBER OF CONTAINERS Schedule 11 (Please Specify) AGO DAYS CCME (Please Specify) HAZARDOUS (Y/N) PRESERVED (Y/N) Other (Please Specify) for: COMMENTS - SITE SAMPLE INFO. DATE/TIME SAMPLED Hold 1 SAMPLE CONTAINMENT 2/12/16 Samples Received By (Print Name and Samples Received By (Print Name and Date/Time Page ____ of ___ Date/Time Date/Time Nº: 017591 Date/Time Samples Received By (Print Name and Sign): Date/Time

Chain of Custody Record

Company:

Contact:

Address:

Client Project #:

Phone:

Company:

Contact:

Address:

1/2RH02-23

16 RH03-1 68402- 2 16RH03-35 16RH03-45 16 RH03 - 7 16 BHO3 - 75

OORHOR-

16 RH02 - 8

16RH03-9.5 16RH03-10

SAMPLE IDENTIFICATION

Report Information

Phone:

Invoice To

PO/AFE#:

LABORATORY

USE (LAB ID #)

Samples Relinquished By (Print Name and Sign)

Samples Relinguished By (Print Name and Sign):

Samples Relinquished By (Print Name and Sign):

Chain of Custody Record	oratories	120 - 8600 Glenlyon Parkw Burnaby, V5J 0 2: 778.452.4000 - F: 778.452.40	Arrival Tempe AGAT Job Nun Notes:	Use Only rature: mber:
Report Information Company:	Report Information 1. Name: Email: 2. Name: Email: Email: Bc CSR Soil BC CSR Soil	Report Form Single Sample p page Multiple Samples page	at Turnaround Regular TAT Rush TAT Date Required: PLEASE CONT CHURCH	Time Required (TAT) 5 to 7 working days Day 2 - 100% Day 3 - 50% Day 4 - 25% TACT LABORATORY IF RUSH REQUIRED SAMPLE
Client Project #:	Image: AL Image: DW Image: Image: AW Image: AW Image: PL Image: AW Image: CL Image: AW Image: CL Image: AW Image: AW Image: AW Image: CL Image: AW Image: AW Image: AW Image: AW			OF CONTAINERS ED (Y/N) DUS (Y/N) EI 60 DAYS
LABORATORY USE (LAB ID #) SAMPLE IDENTIFICATION SAMPLE MATRIX I6BH04-11 SolAutor 00BH04-4 SolAutor I6BH04-4 SolAutor I6BH04-3 I6BH04-3 I6BH04-13 I6BH04-13 I6BH04-13 I6BH04-13 I6BH04-13 I6BH04-13 I6BH04-13 I6BH04-13 I6BH04-13 I6BH04-13	DATE/TIME SAMPLED	TE SAMPLE INFO. NTAINMENT		NUMBER PRESERV Hold for:
Samples Relinquished By (Print Name and Sign): Date/Time Samples Relinquished By (Print Name and Sign): Date/Time Cate/Time	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	Date/Time Date/Time		Page of N ^o : 017589

Page 23 of 26

120 - 8600 Glenlyon Parkway

P: 778.452.4000 · F: 778.452.4074

Burnaby, BC

V5J 0B6

Arrival Temperature:

Notes:

AGAT Job Number:

Laboratory Use Only

Page 24 of 26

		and the second se								
Report Inform	ation		Report Information		Report Format					
Company:			1. Name:		Single	Turnarou	nd Time R	equired (TAT	[]	-
Contact:			Email:	•	Sample per	Regular TA	T D5 to	7 working day	s	
Address:			2. Name:		Multiple	Rush TAT	Day 2	2 - 100%	-	
			Email:		Samples per		Day 3	3 - 50%		
Phone:	Far		Poquiromonto (Dioso	page		Day 4	4 - 25%			
AGAT Quote #	Tax,		Requirements (Pleas	Excel Format	Date Requi	ired:		-		
Client Project #		Territori I	BC CSR Soil	Included	PLEASE C SUBM	ISSION CUT OF	RATORY IF RUSH R	EQUIRED S	SAMPLE B PM	
Chent Project #	•		AL	DW			-	1 1		
Noice To Same as above Yes □ / No I Company:						a second				
			DPL				11 12 1			
Company:			CL	LW						
Contact:			□ RL							
Address:	and the Second second								S	
		-	Schedule 11 (Please Spe	ecify)					NER	
Phone: Fax:			CCME (Please Specify)						TAIL	7 2
PO/AFE#:			Other (Please Specify)						LAN S	
PO/AFE#:			The second se					5 5	9 9 9	
									RO	¥ õ
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER 0	PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER O	PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER 0	PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER	PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER C	HAZARDOL
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER C	PRESERVE HAZARDOI
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION 165403-23 165403-2 167403-25 167403-35 167403-35 167403-7	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER C	PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION 165403-23 165403-2 167403-2 167403-25 167402-35 167402-7 167402-7 167403-75	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER C	PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION ACTION-RS	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER C	PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION 165403-83 165403-83 165403-2 168403-2 168402-35 168403-7 168403-7 168403-7 168403-7 168403-8	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER C	PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION ASPH 03 - 23 ASPH 03 - 25 ASPH 02 - 25 ASPH 02 - 7 ASPH 02 - 7 ASPH 03 - 75 OOPH 03 - 7 ASPH	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER C	PRESERVE HAZARDOI
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION 165403-23 165402-2 167402-25 167402-25 167402-25 167402-7 167402-7 167402-7 167402-7 167403-7 174403-7 167403-7 167403-7 167403-7 174403-7	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT					NUMBER C	PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT	Date/Time			Page	ONUMBER C	PRESERVE HAZARDOI
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT	Date/Time Date/Time			Page		PRESERVE
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT	Date/Time Date/Time			Page		PRESERVE

Chain of C	AGAT Sustody Record	Lab	oratories	120 - 860 P: 778.452.4000	0 Gleniyon Parkway Burnaby. BC V5J 086 • F: 778.452.4074	Laboratory Arrival Temp AGAT Job No Notes:	Use Only berature: _ umber: _ F	EB 13	AH7:58	1		
Report Information Company: Contact: Address: Phone: Fax: AGAT Quote #: Client Project #:			Report Information 1. Name: Email: 2. Name: Email: Bc csr soil	Report Format Single Sample per page Multiple Samples per page Excel Format Included	Turnaround Regular TAT Rush TAT Date Require PLEASE COT SUBMIS	Turnaround Time Required (TAT) Regular TAT 5 to 7 working days Rush TAT Day 2 - 100% Day 3 - 50% Day 4 - 25% Date Required:						
Invoice To Same as above Yes / No Company:			IL IL IPL CL RL Schedule 11 (Please Sp CCME (Please Sp Other (Please Sp)	C AW						BER OF CONTAINERS		OF: DOU DAYS
USE (LAB ID #)	SAMPLE IDENTIFICATION	MATRIX	DATE/TIME SAMPLED	SAMPLE CONTAINMENT						NUME	HAZAF	DIOH
	163HC1-1		2/12/16								-	
	(22 HO) -4	Sal-Va										
	DO2401-4	Solut(
	165H01-5	一個人										
	162401-12											
	16 EHO2 - 1											-
	16EH02-4	Salall										
	00 EH02 - 4	Same										-
	16 BH03-8											
	KEHOR-13	photos .										
	16 PHO2-17	sal+182		000-10								1
Samples Relinquished By (Pri	nt Name and Signt:	Date/Time	Sampins Rotelyed By	(Reint, Same and Sign)	Date/Time			Pag	e	of		
Samples Relinquished By (Pri Samples Relinquished By (Pri	nt Name and Sign): nt Name and Sign):	Date/Time Date/Time	Samples Received By Gemples Received By	Print Name and Signit	Date/Time Date/Time			Nº:	017	59	0	

in

AGAT Laboratories

SAMPLE INTEGRITY RECEIPT FORM - BURNABY

Work Order # 16 106 8853

RECEIVING BASICS: Received From: <u>After hours</u>	Waybill #:
SAMPLE QUANTITIES: Coolers: Containers: S S	
TIME SENSITIVE ISSUES: Earliest Date Sampled: <u> Fc3</u> 2016	ALREADY EXCEEDED? Yes No
NON-CONFORMANCES: 3 temperatures of samples* and average of each of sample ID's) *use jars when available (1) $3+3+3=3$ °C (2)++_= Was ice or ice pack present: Yes No Integrity Issues:	cooler: (record differing temperatures on the CoC next to °C (3)++ _=°C (4)++ _=°C
Account Project Manager: Whom spoken to:	have they been notified of the above issues: Yes No Date and Time:
ADDITIONAL NOTES: "MW1602-2" changed to 167	TP13-2"

Document #: SR-186-9504.001 Revision Date: July 9, 2014 Page 1 of 1

CLIENT NAME: TETRA TECH EBA INC 1066 WEST HASTINGS ST. 9TH FLOOR VANCOUVER, BC V6E3X2 (604) 685-0017

ATTENTION TO: JELENA SLADOJEVIC

PROJECT: ENV.VENV03083

AGAT WORK ORDER: 16V070252

TRACE ORGANICS REVIEWED BY: Andrew Garrard, B.Sc., General Manager

WATER ANALYSIS REVIEWED BY: Andrew Garrard, B.Sc., General Manager

DATE REPORTED: Feb 25, 2016

PAGES (INCLUDING COVER): 17

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (778) 452-4000

*NOTES

VERSION 1: Sample receipt temperature 4°C.

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 17

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accredita ions are location and parameter specific. A complete listing of parameters for each loca ion is available from www.cala.ca and/or www.scc.ca. The tests in his report may not necessarily be included in the scope of accredita ion.

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 16V070252 PROJECT: ENV.VENV03083

I EDH/HEDH Water

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

					i vvalei			
DATE RECEIVED: 2016-02-19								DATE REPORTED: 2016-02-25
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	MW16-04 Water 2/18/2016 7397640	MW16-03 Water 2/18/2016 7397645	MW16-02 Water 2/18/2016 7397646	MW16-05 Water 2/18/2016 7397647	MW16-01 Water 2/19/2016 7397648	
Naphthalene	µg/L	0.05	<0.05	0.11	<0.05	<0.05	1.25	
Quinoline	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Acenaphthylene	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	0.06	
Acenaphthene	µg/L	0.05	<0.05	0.06	<0.05	<0.05	0.15	
Fluorene	µg/L	0.05	<0.05	0.06	<0.05	<0.05	0.09	
Phenanthrene	µg/L	0.05	<0.05	0.30	<0.05	<0.05	0.42	
Anthracene (Water)	µg/L	0.05	<0.05	0.08	<0.05	<0.05	0.18	
Acridine	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Fluoranthene	µg/L	0.05	<0.05	0.39	<0.05	<0.05	0.67	
Pyrene	µg/L	0.02	<0.02	0.38	<0.02	0.03	0.67	
Benzo(a)anthracene	µg/L	0.05	<0.05	0.15	<0.05	<0.05	0.30	
Chrysene	µg/L	0.05	<0.05	0.20	<0.05	<0.05	0.39	
Benzo(b)fluoranthene	µg/L	0.05	<0.05	0.15	<0.05	<0.05	0.30	
Benzo(j)fluoranthene	µg/L	0.05	<0.05	0.09	<0.05	<0.05	0.17	
Benzo(k)fluoranthene	µg/L	0.05	<0.05	0.08	<0.05	<0.05	0.15	
Benzo(a)pyrene	µg/L	0.01	0.01	0.18	0.01	0.02	0.34	
Indeno(1,2,3-c,d)pyrene	µg/L	0.05	<0.05	0.10	<0.05	<0.05	0.18	
Dibenzo(a,h)anthracene	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	0.06	
Benzo(g,h,i)perylene	µg/L	0.05	<0.05	0.12	<0.05	<0.05	0.24	
EPH C10-C19	µg/L	100	<100	<100	<100	<100	140	
EPH C19-C32	µg/L	100	<100	240	<100	<100	1260	
LEPH C10-C19	µg/L	100	<100	<100	<100	<100	140	
HEPH C19-C32	µg/L	100	<100	240	<100	<100	1260	
Benzo(b+j)fluoranthene	µg/L	0.1	<0.1	0.2	<0.1	<0.1	0.5	
Surrogate	Unit	Acceptable Limits						
Naphthalene - d8	%	50-130	86	78	84	81	81	
2-Fluorobiphenyl	%	50-130	85	79	83	80	83	
P-Terphenyl - d14	%	60-130	88	94	93	91	92	

Certified By:

ander Canarl

AGAT WORK ORDER: 16V070252 PROJECT: ENV.VENV03083

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

LEPH/HEPH Water

DATE RECEIVED: 2016-02-19

DATE REPORTED: 2016-02-25

ander Cernorl

Unit 120, 8600 Glenlyon Parkway

Burnaby, British Columbia

http://www.agatlabs.com

CANADA V5J 0B6

TEL (778)452-4000 FAX (778)452-4074

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7397640-7397648 LEPH & HEPH results have been corrected for PAH contributions.

Certified By:

AGAT WORK ORDER: 16V070252 PROJECT: ENV.VENV03083 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

Volatile Organic Compounds in Water										
DATE RECEIVED: 2016-02-19						DATE REPORTED: 2016-02-25				
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	MW16-02 Water 2/18/2016 7397646	MW16-05 Water 2/18/2016 7397647	MW16-01 Water 2/19/2016 7397648					
Chloromethane	µg/L	1	<1	<1	<1					
Vinyl Chloride	μg/L	1	<1	<1	<1					
Bromomethane	µg/L	1	<1	<1	<1					
Chloroethane	µg/L	1	<1	<1	<1					
Trichlorofluoromethane	µg/L	1	<1	<1	<1					
Acetone	µg/L	10	<10	<10	<10					
1,1-Dichloroethene	µg/L	1	<1	<1	<1					
Dichloromethane	µg/L	1	<1	<1	<1					
Methyl tert-butyl ether (MTBE)	µg/L	1	<1	<1	<1					
2-Butanone (MEK)	µg/L	10	<10	<10	<10					
trans-1,2-Dichloroethylene	µg/L	1	<1	<1	<1					
1,1-Dichloroethane	μg/L	1	<1	<1	<1					
cis-1,2-Dichloroethylene	µg/L	1	<1	<1	<1					
Chloroform	µg/L	1	<1	<1	<1					
1,2-Dichloroethane	µg/L	1	<1	<1	<1					
1,1,1-Trichloroethane	µg/L	1	<1	<1	<1					
Carbon Tetrachloride	µg/L	0.5	<0.5	<0.5	<0.5					
Benzene	µg/L	0.5	<0.5	<0.5	<0.5					
1,2-Dichloropropane	µg/L	1	<1	<1	<1					
Trichloroethene	µg/L	1	<1	<1	<1					
Bromodichloromethane	µg/L	1	<1	<1	<1					
trans-1,3-Dichloropropene	μg/L	1	<1	<1	<1					
4-Methyl-2-pentanone (MIBK)	µg/L	10	<10	<10	<10					
cis-1,3-Dichloropropene	µg/L	1	<1	<1	<1					
1,1,2-Trichloroethane	µg/L	1	<1	<1	<1					
Toluene	µg/L	0.5	<0.5	<0.5	<0.5					
Dibromochloromethane	µg/L	1	<1	<1	<1					
Ethylene Dibromide	µg/L	0.3	<0.3	<0.3	<0.3					
Tetrachloroethene	µg/L	1	<1	<1	<1					
1,1,1,2-Tetrachloroethane	μg/L	1	<1	<1	<1					

Certified By:

ander Cernorl

AGAT WORK ORDER: 16V070252 PROJECT: ENV.VENV03083

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.agatlabs.com

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

Volatile Organic Compounds in Water										
DATE RECEIVED: 2016-02-19						DATE REPORTED: 2016-02-25				
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	MW16-02 Water 2/18/2016 7397646	MW16-05 Water 2/18/2016 7397647	MW16-01 Water 2/19/2016 7397648					
Chlorobenzene	µg/L	1	<1	<1	<1					
Ethylbenzene	µg/L	0.5	<0.5	<0.5	<0.5					
m&p-Xylene	µg/L	0.5	<0.5	<0.5	<0.5					
Bromoform	µg/L	1	<1	<1	<1					
Styrene	µg/L	0.5	<0.5	<0.5	<0.5					
1,1,2,2-Tetrachloroethane	µg/L	1	<1	<1	<1					
o-Xylene	µg/L	0.5	<0.5	<0.5	<0.5					
1,3-Dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5					
1,4-Dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5					
1,2-Dichlorobenzene	µg/L	0.5	<0.5	<0.5	<0.5					
1,2,4-Trichlorobenzene	µg/L	1	<1	<1	<1					
Total Trihalomethanes	µg/L	2	<2	<2	<2					
Total Xylenes	µg/L	1	<1	<1	<1					
Surrogate	Unit	Acceptable Limits								
Bromofluorobenzene	%	70-130	84	78	85					
Dibromofluoromethane	%	70-130	94	104	105					
Toluene - d8	%	70-130	105	100	108					

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

ander Cernorl

AGAT WORK ORDER: 16V070252 PROJECT: ENV.VENV03083 Unit 120, 8600 Glenlyon Parkway Burnaby, British Columbia CANADA V5J 0B6 TEL (778)452-4000 FAX (778)452-4074 http://www.aqatlabs.com

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

British Columbia CSR- Schedule 6 Dissolved Metals									
DATE RECEIVED: 2016-02-19								DATE REPORTED: 2016-02-25	
Parameter	S/ Unit	AMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	MW16-04 Water 2/18/2016 7397640	MW16-03 Water 2/18/2016 7397645	MW16-02 Water 2/18/2016 7397646	MW16-05 Water 2/18/2016 7397647	MW16-01 Water 2/19/2016 7397648		
Aluminum Dissolved	µg/L	2	6	8	11	10	9		
Antimony Dissolved	µg/L	0.2	1.1	23.4	4.7	4.8	0.9		
Arsenic Dissolved	μg/L	0.1	0.8	2.8	0.5	0.5	20.4		
Barium Dissolved	µg/L	0.2	35.4	102	28.2	29.0	227		
Beryllium Dissolved	µg/L	0.01	<0.01	<0.01	<0.01	<0.01	0.01		
Boron Dissolved	µg/L	2	32	55	21	21	76		
Cadmium Dissolved	µg/L	0.01	0.02	0.02	0.01	<0.01	0.06		
Calcium Dissolved	µg/L	50	57100	98500	43300	44000	151000		
Chromium Dissolved	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5		
Cobalt Dissolved	μg/L	0.05	0.10	2.00	0.20	0.19	14.0		
Copper Dissolved	μg/L	0.2	5.8	1.7	8.0	8.6	0.9		
Iron Dissolved	μg/L	10	<10	174	13	12	3420		
Lead Dissolved	µg/L	0.05	<0.05	<0.05	<0.05	<0.05	0.11		
Lithium Dissolved	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	5.5		
Magnesium Dissolved	µg/L	50	6050	9670	4440	4490	50100		
Manganese Dissolved	µg/L	1	9	1430	19	20	1290		
Molybdenum Dissolved	µg/L	0.05	1.92	22.1	4.60	4.42	2.95		
Nickel Dissolved	μg/L	0.2	0.6	1.6	0.8	0.8	19.6		
Potassium Dissolved	µg/L	50	6030	7130	6960	7110	10100		
Selenium Dissolved	µg/L	0.5	<0.5	0.7	<0.5	<0.5	1.9		
Silver Dissolved	μg/L	0.02	<0.02	<0.02	<0.02	<0.02	<0.02		
Sodium Dissolved	µg/L	50	4290	15600	1860	1870	87300		
Thallium Dissolved	µg/L	0.01	<0.01	0.01	<0.01	<0.01	0.02		
Titanium Dissolved	µg/L	0.5	1.0	1.8	1.1	1.0	4.3		
Uranium Dissolved	µg/L	0.01	0.28	1.77	0.31	0.32	2.62		
Vanadium Dissolved	µg/L	0.5	1.5	1.3	2.1	2.3	1.0		
Zinc Dissolved	µg/L	2	<2	4	<2	<2	12		
Hardness (calc)	ug CaCO3/L	100	167000	286000	126000	128000	583000		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

ander Cernorl

AGAT CERTIFICATE OF ANALYSIS (V1)

AGAT WORK ORDER: 16V070252 PROJECT: ENV.VENV03083

CLIENT NAME: TETRA TECH EBA INC

SAMPLING SITE:

ATTENTION TO: JELENA SLADOJEVIC

SAMPLED BY:

pH in Water										
DATE RECEIVED: 2016-02-19 DATE REPORTED: 2016-02-25										
		SAMPLE DES	CRIPTION:	MW16-04	MW16-03	MW16-02	MW16-05	MW16-01		
		SAM	PLE TYPE:	Water	Water	Water	Water	Water		
		DATE	SAMPLED:	2/18/2016	2/18/2016	2/18/2016	2/18/2016	2/19/2016		
Parameter	Unit	G/S	RDL	7397640	7397645	7397646	7397647	7397648		
рН	pH units		0.01	7.76	7.50	7.69	7.68	7.71		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7397640-7397648 Literature holding time exceeded for pH analysis.

Certified By:

ander Cernorl

Unit 120, 8600 Glenlyon Parkway

Burnaby, British Columbia

http://www.agatlabs.com

CANADA V5J 0B6

TEL (778)452-4000 FAX (778)452-4074

Quality Assurance

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03083

AGAT WORK ORDER: 16V070252 ATTENTION TO: JELENA SLADOJEVIC

SAMPLING SITE:							5	SAMPI	ED B	Y:					
			Trac	e Org	ganic	s Ana	alysis								
RPT Date: Feb 25, 2016			DUPLICATE				REFEREN	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable asured Limits		Recovery	Accer Lin	otable nits	Recovery	Acce Lin	ptable nits
		iù					value	Lower	Upper		Lower	Upper		Lower	Upper
Volatile Organic Compounds in Wa	ater														
Chloromethane	65342	7397803	<1	<1	NA	< 1	100%	80%	120%				107%	70%	130%
Vinyl Chloride	65342	7397803	<1	<1	NA	< 1	100%	80%	120%				102%	70%	130%
Bromomethane	65342	7397803	<1	<1	NA	< 1	100%	80%	120%				109%	70%	130%
Chloroethane	65342	7397803	<1	<1	NA	< 1	100%	80%	120%				112%	70%	130%
Trichlorofluoromethane	65342	7397803	<1	<1	NA	< 1	100%	80%	120%				91%	70%	130%
Acetone	65342	7397803	<10	<10	NA	< 10	102%	80%	120%						
1,1-Dichloroethene	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				91%	70%	130%
Dichloromethane	65342	7397803	<1	<1	NA	< 1	102%	80%	120%				89%	70%	130%
Methyl tert-butyl ether (MTBE)	65342	7397803	<1	<1	NA	< 1	102%	80%	120%				90%	70%	130%
2-Butanone (MEK)	65342	7397803	<10	<10	NA	< 10	100%	80%	120%						
trans-1,2-Dichloroethylene	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				94%	70%	130%
1,1-Dichloroethane	65342	7397803	<1	<1	NA	< 1	102%	80%	120%				98%	70%	130%
cis-1,2-Dichloroethylene	65342	7397803	<1	<1	NA	< 1	102%	80%	120%				93%	70%	130%
Chloroform	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				92%	70%	130%
1,2-Dichloroethane	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				91%	70%	130%
1,1,1-Trichloroethane	65342	7397803	<1	<1	NA	< 1	102%	80%	120%				90%	70%	130%
Carbon Tetrachloride	65342	7397803	<0.5	<0.5	NA	< 0.5	102%	80%	120%				90%	70%	130%
Benzene	65342	7397803	<0.5	<0.5	NA	< 0.5	102%	80%	120%				96%	70%	130%
1,2-Dichloropropane	65342	7397803	<1	<1	NA	< 1	102%	80%	120%				97%	70%	130%
Trichloroethene	65342	7397803	<1	<1	NA	< 1	102%	80%	120%				95%	70%	130%
Bromodichloromethane	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				92%	70%	130%
trans-1,3-Dichloropropene	65342	7397803	<1	<1	NA	< 1	102%	80%	120%				94%	70%	130%
4-Methyl-2-pentanone (MIBK)	65342	7397803	<10	<10	NA	< 10	102%	80%	120%						
cis-1,3-Dichloropropene	65342	7397803	<1	<1	NA	< 1	102%	80%	120%				87%	70%	130%
1,1,2-Trichloroethane	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				91%	70%	130%
Toluene	65342	7397803	<0.5	<0.5	NA	< 0.5	102%	80%	120%				95%	70%	130%
Dibromochloromethane	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				91%	70%	130%
Ethylene Dibromide	65342	7397803	<0.3	<0.3	NA	< 0.3	102%	80%	120%				90%	70%	130%
Tetrachloroethene	65342	7397803	<1	<1	NA	< 1	106%	80%	120%				87%	70%	130%
1,1,1,2-Tetrachloroethane	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				96%	70%	130%
Chlorobenzene	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				95%	70%	130%
Ethylbenzene	65342	7397803	<0.5	<0.5	NA	< 0.5	102%	80%	120%				96%	70%	130%
m&p-Xylene	65342	7397803	<0.5	<0.5	NA	< 0.5	102%	80%	120%				97%	70%	130%
Bromoform	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				95%	70%	130%
Styrene	65342	7397803	<0.5	<0.5	NA	< 0.5	103%	80%	120%				100%	70%	130%
1,1,2,2-Tetrachloroethane	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				93%	70%	130%
o-Xylene	65342	7397803	<0.5	<0.5	NA	< 0.5	102%	80%	120%				97%	70%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

65342 7397803

65342 7397803

<0.5

<0.5

< 0.5

<0.5

1,3-Dichlorobenzene

1,4-Dichlorobenzene

AGAT Laboratories is accredited to ISO/IEC 17025 by he Canadian Association for Laboratory Accredita ion Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on he scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are loca ion and parameter specific. A complete lis ing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in he scope of accreditation.

NA

NA

< 0.5

< 0.5

101% 80% 120%

80% 120%

101%

70% 130% Page 8 of 17

70% 130%

100%

98%

Quality Assurance

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03083

SAMPLING SITE:

AGAT WORK ORDER: 16V070252 ATTENTION TO: JELENA SLADOJEVIC SAMPLED BY:

		Trace	Orga	anics	Analy	/sis (Conti	nue	d)									
RPT Date: Feb 25, 2016			0	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE		MATRIX SPIKE		KE				
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Acceptable asured Limits		Acceptable easured Limits	Recovery	Acceptable Limits		Recovery	Acce	ptable nits
								Lower	Upper		Lower	Upper		Lower	Upper			
1,2-Dichlorobenzene	65342	7397803	<0.5	<0.5	NA	< 0.5	101%	80%	120%				100%	70%	130%			
1,2,4-Trichlorobenzene	65342	7397803	<1	<1	NA	< 1	101%	80%	120%				95%	70%	130%			
Comments: RPDs are calculated u	using raw and	alytical data	and not th	e rounded	duplicate	values rep	oorted.											
LEPH/HEPH Water																		
Naphthalene	65341	W-MS1	0.46	0.48	4.3%	< 0.05	101%	80%	120%				93%	50%	130%			
Quinoline	65341	W-MS1	0.5	0.4	NA	< 0.1	100%	80%	120%				99%	50%	130%			
Acenaphthylene	65341	W-MS1	0.48	0.50	4.1%	< 0.05	101%	80%	120%				98%	50%	130%			
Acenaphthene	65341	W-MS1	0.52	0.50	3.9%	< 0.05	101%	80%	120%				104%	50%	130%			
Fluorene	65341	W-MS1	0.51	0.57	11.1%	< 0.05	102%	80%	120%				104%	50%	130%			
Phenanthrene	65341	W-MS1	0.49	0.51	4.0%	< 0.05	99%	80%	120%				99%	60%	130%			
Anthracene (Water)	65341	W-MS1	0.50	0.51	2.0%	< 0.05	101%	80%	120%				100%	60%	130%			
Acridine	65341	W-MS1	0.50	0.51	2.0%	< 0.05	101%	80%	120%				101%	50%	130%			
Fluoranthene	65341	W-MS1	0.50	0.51	2.0%	< 0.05	101%	80%	120%				102%	60%	130%			
Pyrene	65341	W-MS1	0.49	0.50	2.0%	< 0.02	101%	80%	120%				99%	60%	130%			
Benzo(a)anthracene	65341	W-MS1	0.50	0.50	0.0%	< 0.05	101%	80%	120%				102%	60%	130%			
Chrysene	65341	W-MS1	0.50	0.52	3.9%	< 0.05	101%	80%	120%				102%	60%	130%			
Benzo(b)fluoranthene	65341	W-MS1	0.53	0.46	14.1%	< 0.05	103%	80%	120%				106%	60%	130%			
Benzo(j)fluoranthene	65341	W-MS1	0.50	0.51	2.0%	< 0.05	100%	80%	120%				101%	60%	130%			
Benzo(k)fluoranthene	65341	W-MS1	0.44	0.47	6.6%	< 0.05	98%	80%	120%				88%	60%	130%			
Benzo(a)pyrene	65341	W-MS1	0.49	0.48	2.1%	< 0.01	100%	80%	120%				99%	60%	130%			
Indeno(1,2,3-c,d)pyrene	65341	W-MS1	0.49	0.48	2.1%	< 0.05	100%	80%	120%				100%	60%	130%			
Dibenzo(a,h)anthracene	65341	W-MS1	0.48	0.46	4.3%	< 0.05	101%	80%	120%				98%	60%	130%			
Benzo(g,h,i)perylene	65341	W-MS1	0.49	0.48	2.1%	< 0.05	101%	80%	120%				102%	60%	130%			
Naphthalene - d8	65341	W-MS1	79	87	9.6%		100%	80%	120%				80%	50%	130%			
2-Fluorobiphenyl	65341	W-MS1	79	87	9.6%		101%	80%	120%				80%	50%	130%			
P-Terphenyl - d14	65341	W-MS1	89	91	2.2%		100%	80%	120%				89%	60%	130%			
EPH C10-C19	65341	W-MS1	8960	8970	0.1%	< 100	107%	70%	130%				100%	70%	130%			
EPH C19-C32	65341	W-MS1	11000	11000	0.0%	< 100	115%	70%	130%				101%	70%	130%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

ander Cernorl

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by he Canadian Association for Laboratory Accredita ion Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on he scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are loca ion and parameter specific. A complete lis ing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in he scope of accreditation.

Certified By:

Page 9 of 17

Quality Assurance

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03083

SAMPLING SITE:

AGAT WORK ORDER: 16V070252 ATTENTION TO: JELENA SLADOJEVIC SAMPLED BY:

Water Analysis

RPT Date: Feb 25, 2016				UPLICATI	=		REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE			
	Detab	Sample		Due #0		Method Blank	Measured	Acce	ptable nits	Deserves	Acceptable Limits		Deserves	Acce	ptable nits
PARAMETER	Batch	ld	Dup #1	Dup #2	RPD		Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Uppe
British Columbia CSR- Schedule 6	Dissolved N	letals						,			,			,	
Aluminum Dissolved	7395609		2	2	NA	< 2	109%	90%	110%	102%	90%	110%			
Antimony Dissolved	7395609		<0.2	<0.2	NA	< 0.2	99%	90%	110%	96%	90%	110%			
Arsenic Dissolved	7395609		<0.1	<0.1	NA	< 0.1	103%	90%	110%	106%	90%	110%			
Barium Dissolved	7395609		4.1	4.2	0.9%	< 0.2	110%	90%	110%	105%	90%	110%			
Beryllium Dissolved	7395609		<0.01	<0.01	NA	< 0.01	106%	90%	110%	102%	90%	110%			
Boron Dissolved	7395609		32	32	0.3%	< 2	107%	90%	110%	102%	90%	110%			
Cadmium Dissolved	7395609		0.03	0.03	NA	< 0.01	107%	90%	110%	98%	90%	110%			
Calcium Dissolved	7395609		26800	26800	0.3%	< 50	104%	90%	110%	102%	90%	110%			
Chromium Dissolved	7395609		<0.5	<0.5	NA	< 0.5	102%	90%	110%	98%	90%	110%			
Cobalt Dissolved	7395609		<0.05	0.06	NA	< 0.05	105%	90%	110%	99%	90%	110%			
Copper Dissolved	7395609		1.5	1.4	5.1%	< 0.2	109%	90%	110%	103%	90%	110%			
Iron Dissolved	7395609		<10	<10	NA	< 10	109%	90%	110%	107%	90%	110%			
Lead Dissolved	7395609		<0.05	<0.05	NA	< 0.05	105%	90%	110%	99%	90%	110%			
Lithium Dissolved	7395609		<0.5	<0.5	NA	< 0.5				97%	90%	110%			
Magnesium Dissolved	7395609		4660	4670	0.2%	< 50	106%	90%	110%	104%	90%	110%			
Manganese Dissolved	7395609		<1	<1	NA	< 1	107%	90%	110%	100%	90%	110%			
Molybdenum Dissolved	7395609		0.49	0.49	0.0%	< 0.05	97%	90%	110%	97%	90%	110%			
Nickel Dissolved	7395609		0.5	0.6	NA	< 0.2	107%	90%	110%	104%	90%	110%			
Potassium Dissolved	7395609		629	634	0.9%	< 50	98%	90%	110%	105%	90%	110%			
Selenium Dissolved	7395609		<0.5	0.6	NA	< 0.5	104%	90%	110%	99%	90%	110%			
Silver Dissolved	7395609		<0.02	<0.02	NA	< 0.02				93%	90%	110%			
Sodium Dissolved	7395609		16000	16000	0.4%	< 50	104%	90%	110%	109%	90%	110%			
Thallium Dissolved	7395609		0.04	0.03	NA	< 0.01	100%	90%	110%	98%	90%	110%			
Titanium Dissolved	7395609		0.8	0.8	NA	< 0.5				98%	90%	110%			
Uranium Dissolved	7395609		0.02	0.02	NA	< 0.01	99%	90%	110%	101%	90%	110%			
Vanadium Dissolved	7395609		1.1	1.0	NA	< 0.5	103%	90%	110%	98%	90%	110%			
Zinc Dissolved	7395609		6	6	NA	< 2	108%	90%	110%	106%	90%	110%			

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

pH in Water								
pН	7397795	6.40	6.40	0.0%	< 0.01	100%	95%	105%

Comments: RPDs are calculated using raw analytical data and not the rounded duplicate values reported.

Certified By:

ander Cernorl

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by he Canadian Association for Laboratory Accredita ion Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on he scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are loca ion and parameter specific. A complete lis ing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in he scope of accreditation.

Page 10 of 17

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03083

AGAT WORK ORDER: 16V070252 ATTENTION TO: JELENA SLADOJEVIC

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	1		,
Naphthalene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Quinoline	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Acenaphthylene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Acenaphthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Fluorene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Phenanthrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Anthracene (Water)	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Acridine	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Pyrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Benzo(a)anthracene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Chrysene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Benzo(b)fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Benzo(j)fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D (PAH)	GC/MS
Benzo(k)fluoranthene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Benzo(a)pyrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Indeno(1,2,3-c,d)pyrene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Dibenzo(a,h)anthracene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Benzo(g,h,i)perylene	ORG-180-5133	Modified from BC MOE Lab Manual Section D	GC/MS
Naphthalene - d8			GC/MS
2-Fluorobiphenyl	ORG-180-5133	modified from BC MOE Lab Manual Section D	GC/MS
P-Terphenyl - d14	ORG-180-5133	modified from BC MOE Lab Manual Section D	GC/MS
EPH C10-C19	ORG-180-5134	Modified from BC MOE Lab Manual Section D (EPH)	GC/FID
EPH C19-C32	ORG-180-5134	Modified from BC MOE Lab Manual Section D (EPH)	GC/FID
LEPH C10-C19	ORG-180-5134	Modified from BC MOE Lab Manual Section D (EPH)	GC/FID
HEPH C19-C32	ORG-180-5134	Modified from BC MOE Lab Manual Section D (EPH)	GC/FID
Chloromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Vinyl Chloride	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03083

AGAT WORK ORDER: 16V070252 ATTENTION TO: JELENA SLADOJEVIC

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Bromomethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Chloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Trichlorofluoromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Acetone	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1-Dichloroethene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Dichloromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Methyl tert-butyl ether (MTBE)	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
2-Butanone (MEK)	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
trans-1,2-Dichloroethylene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1-Dichloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
cis-1,2-Dichloroethylene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Chloroform	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,2-Dichloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1,1-Trichloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Carbon Tetrachloride	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Benzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,2-Dichloropropane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Trichloroethene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Bromodichloromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
trans-1,3-Dichloropropene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
4-Methyl-2-pentanone (MIBK)	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
cis-1,3-Dichloropropene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1,2-Trichloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Toluene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Dibromochloromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Ethylene Dibromide	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
Tetrachloroethene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS
1,1,1,2-Tetrachloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D	GC/MS

CLIENT NAME: TETRA TECH EBA INC PROJECT: ENV.VENV03083

SAMPLING SITE:

AGAT WORK ORDER: 16V070252 ATTENTION TO: JELENA SLADOJEVIC SAMPLED BY:

	1				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Chlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
Ethylbenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
m&p-Xylene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
Bromoform	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
Styrene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
1,1,2,2-Tetrachloroethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
o-Xylene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
1,3-Dichlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
1,4-Dichlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
1,2-Dichlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
1,2,4-Trichlorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
Bromofluorobenzene	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
Dibromofluoromethane	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		
Toluene - d8	ORG-180-5131	Modified from BC MOE Lab Manual Section D (VOC)	GC/MS		

CLIENT NAME: TETRA TECH EBA INC

PROJECT: ENV.VENV03083

AGAT WORK ORDER: 16V070252 ATTENTION TO: JELENA SLADOJEVIC SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis		1	1
Aluminum Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Antimony Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Arsenic Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Barium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Beryllium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Boron Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Cadmium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Calcium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES
Chromium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Cobalt Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Copper Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Iron Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES
Lead Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Lithium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Magnesium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES
Manganese Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES
Molybdenum Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Nickel Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Potassium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES
Selenium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Silver Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Sodium Dissolved	MET-181-6101, LAB-181-4015	Modified from SM 3120 B	ICP/OES
Thallium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Titanium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Uranium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Vanadium Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
Zinc Dissolved	MET-181-6102, LAB-181-4015	Modified from SM 3125 B	ICP-MS
рН	INOR-181-6000	Modified from SM 4500-H+	PH METER

Tech EBA

Sladojevic

120 - 8600 Glenlyon Parkway Burnaby, BC

page

P: 778.452.4000 - F: 778.452.4074

Laboratory Use Only 4°C Arrival Temperature: V5J 0B6 16V070252 AGAT Job Number: Notes: FE8 19 RH10:58 **Report Format** Single **Turnaround Time Required (TAT)** Regular TAT 5 to 7 working days Hold for: 2 60 DAYS

2015

Chain	of	Custody	Record
-------	----	---------	--------

Pt Co

en n

Report Information

Company:

Contact:

Page 15 of 17

Address: Phone: AGAT Quote #: Client Project # Invoice To Company: Contact: Address: Phone: PO/AFE#:	<u>8945,5803</u> Fax: ENV_VENV03083 Same as above Y	/es)Q/No口	2. Name: Email: Requirements (Ple BC CSR Soil AL IL CL CL RL Schedule 11 (Please CCME (Please Other (Please	a Shad previnc ease Check) BC CSR - Water DW AW IW LW Specify) Specify	Multiple Samples per page Excel Format Included	Rush TAT	Day Day Day Day Contact LABC MISSION cut c	2 - 100 3 - 509 4 - 259 DRATORY DFF FOR E	% 6 F RUSH R FFECTIVE	OF CONTAINERS	ED (Y/N)	inc (v/v) Suc
LABORATORY USE (LAB ID #)	SAMPLE IDENTIFICATION	SAMPLE MATRIX	DATE/TIME SAMPLED	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT						NUMBER	PRESERV	HAZARDO
7397640	MW16-04 MW16-03 MW16-02 MW16-05 MW16-01	wite (2/18/16	Tillered metals								
Semples Reinquished By (Prin Samples Helinquished By (Prin Samples Reinquished By (Prin	nt Name and Sign): To SAT 3 Y nt Name and Sign): nt Name and Sign):	Date/Time 15:40 Date/Time Date/Time	Samples Receive	d By (Print Name and Sign): d By (Print Name and Sign): d By (Print Name and Sign):	Date/Time Date/Time Date/Time Date/Time	16 .		Nº:	oge	of 76	74	1
Document #: D/\-186-1500.00	3									Date F	levised; Ju	h 16

Report Information

1. Name: Diew Tarloi

Email: Drews. Taylor & Johrsdech

	Lab	oratories	160070252 P: 778.452.400	V5J 086 0 - F: 778.452.4074	AG/
chain of Custody Record		Desert Informati		Torrest France	-
Company: Tetre Tech EBA Contact: Telena Stadoievic Address: SES Dunsonviv ST		1. Name: Dicc Email: Dr 2. Name: Lex Email:	an D'allor and of etr. Jelenci Q'Let.	Single Sample per page Multiple Samples per	Tur Reg Rus
Phone: 778945,5843 Fax: AGAT Quote #: Client Project #: LAV.VEAV0308?		Requirements (P)	ease Check) CBC CSR - Water	Excel Forma	t Date
nvoice To Same as above Ye Company:		CCME (Please	a Specify)	PH red metals	
PO/AFE#:	SAMPLE	Other (Please	COMMENTS - SITE SAMPLE INFO. SAMPLE CONTAINMENT	LIHE VOC	
397640 MI-116-04	unto (12/18/16	Fildered metals		tt
645 MW16-03	1	1			11
646 Mh116-02				XXXX	1
647 MW16-05	11				
1648 MW16-01	wiented	2/19/16			
stee Pedropulated By (frink harris and Sign);	Dena/Terry	Sample's Receive	ie By (Prost Norma and Sign).	Data/Time	511

NUMERI #: DIV-180-1500.003

AGAT Laboratories

SAMPLE INTEGRITY RECEIPT FORM - BURNABY

Work Order # 16/070252

Received From: After hours	Waybill #:
SAMPLE QUANTITIES: Coolers: Containers:5	
TIME SENSITIVE ISSUES: Earliest Date Sampled: 18-Feb-16	ALREADY EXCEEDED? Yes No
NON-CONFORMANCES: 3 temperatures of samples* and average of each sample ID's) *use jars when available (1) $5 + 4 + 3 = 4 \circ C$ (2) $+ + = =$ Was ice or ice pack present: Yes No Integrity Issues:	cooler: (record differing temperatures on the CoC next to °C (3)++ _=°C (4)++ _=°C
Account Project Manager: Whom spoken to:	have they been notified of the above issues: Yes No Date and Time:
ADDITIONAL NOTES:	

Document #: SR-186-9504.001 Revision Date: July 9, 2014