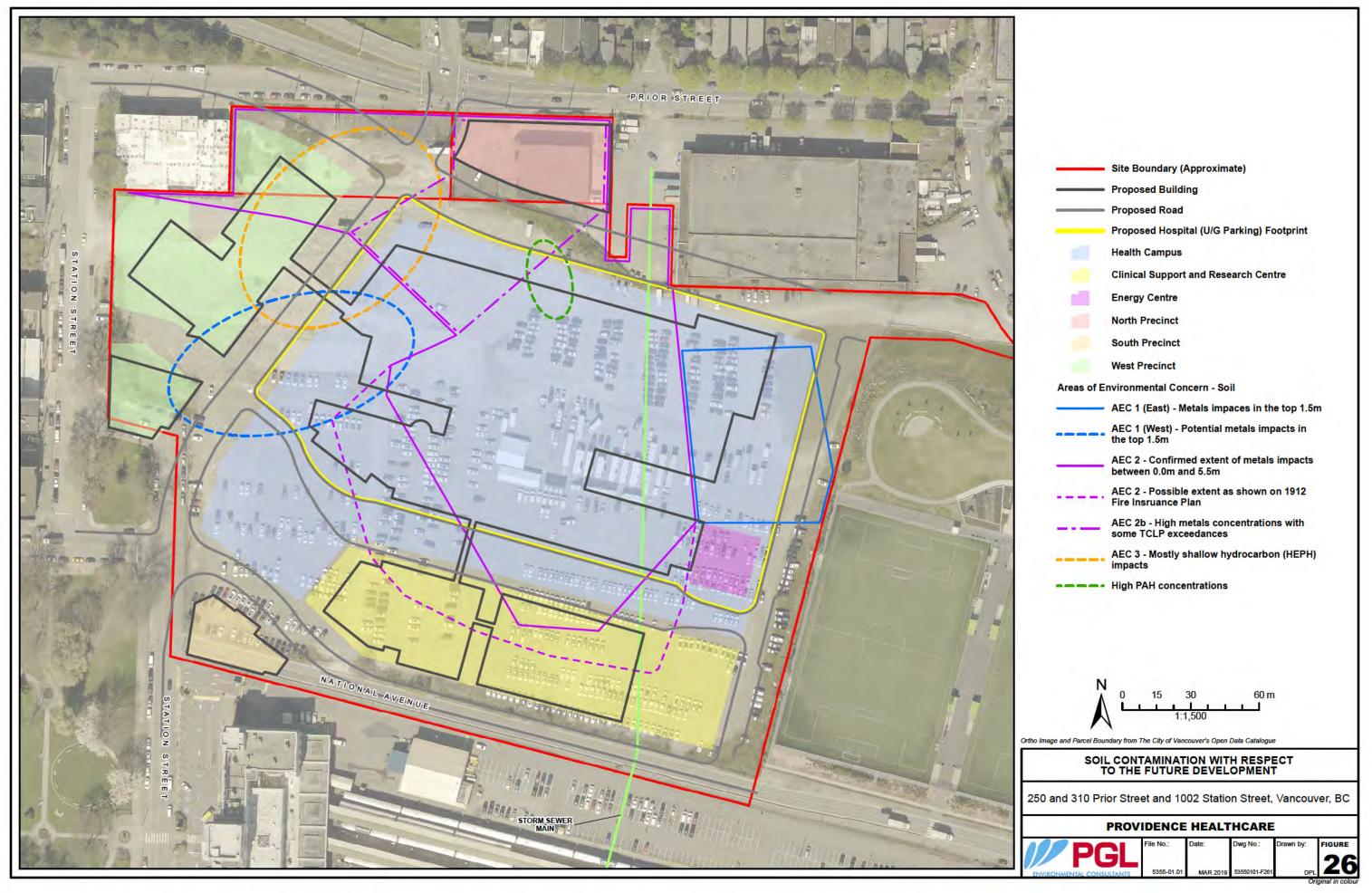

Table for Figure 19 Soil Vapour Results - Volatile Organic Compounds 1002 Station St., 250 and 310 Prior St., Vancouver, BC Providence Health Care, PGL File 5355-01.01


								VOCs							
	trans-1,3-dichloropropene	Ethyl acetate	Freon 113	Нехапе	Isopropylbenzene	Methyl Ethyl Ketone [MEK]	Styrene	Tetrachloroethane, 1,1,1,2-	Tetrachloroethane, 1,1,2,2-	Tetrachloroethylene	Trichloroethane, 1,1,1-	Trichloroethane, 1,1,2-	Trichloroethylene	Trichlorofluoromethane	Vinyl chloride
	μg/m3	μg/m3	μg/m3	μg/m3	µg/m3	μg/m3	µg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3	μg/m3
RDL	1.7	34	8.6	8.6	0.86	8.6	0.86	1.4	1	10	0.86	0.6	0.52	8.6	1
CSR Sch 3.3 Parkade	124.55	550	250000	5500	3000	40000	8000	10	300	300	40000	1.5	15	5500	9
CSR Sch 3.3 CL	1 mar 2 min	200	90000	2000	1000	15000	3000	4	100	100	15000	0.6	6	2000	3.5
CSR Sch 3.3 RL		70	30000	700	400	5000	1000	1.5	40	40	5000	0.5	2	700	1

Location	Date	Bentonite Seal (m bgs)	AttenuationFactorTyp	e Factor															
			Unattenuated		<2.2	<45	<11	<11	<1.1	<11	1.7	<1.8	<1.1	24,500	30.1	<27	590	<11	3.4
SV10	2018-08-16	0.95	Outdoor Exposure	0.0001	< 0.00022	<0.0045	<0.0011	< 0.0011	< 0.00011	<0.0011	0.00017	<0.00018	<0.00011	2.45	0.00301	< 0.0027	0.059	< 0.0011	0.00034
			Subslab	0.02	<0.044	<0.9	<0.22	<0.22	< 0.022	<0.22	0.034	< 0.036	< 0.022	490	0.602	<0.54	11.8	< 0.22	0.068
			Unattenuated	÷	<2.2	<44	<11	57	700	<11	<1.1	<1.8	<2100	<13	<1.1	<39	1.57	<11	<1.3
SV11	2018-08-16	0.95	Outdoor Exposure	0.0001	< 0.00022	<0.0044	< 0.0011	0.0057	0.07	<0.0011	< 0.00011	<0.00018	<0.21	< 0.0013	<0.00011	< 0.0039	0.000157	< 0.0011	< 0.00013
7			Subslab	0.02	<0.044	<0.88	<0.22	1.14	14	<0.22	<0.022	< 0.036	<42	<0.26	<0.022	<0.78	0.0314	<0.22	< 0.026
ravanesa.			Unattenuated	1	<1.7	<34	<8.6	55.4	769	<8.6	<1	<1.4	<860	<10	<0.86	<10	1.62	<8.6	<1
Z02 (Dup of SV11)	2018-08-16	0.95	Outdoor Exposure	0.0001	< 0.00017	<0.0034	<0.00086	0.00554	0.0769	<0.00086	<0.0001	< 0.00014	<0.086	< 0.001	<0.000086	<0.001	0.000162	<0.00086	<0.0001
3411)			Subslab	0.02	< 0.034	<0.68	< 0.172	1.108	15.38	< 0.172	<0.02	<0.028	<17.2	< 0.2	< 0.0172	<0.2	0.0324	< 0.172	<0.02
	1		Unattenuated		<2.4	<48	<12	18	1,2	<12	<1.2	<1.9	<9.5	20	<1.2	<9.5	6.29	<12	5.3
SV12	2018-08-16	0.95	Outdoor Exposure	0.0001	< 0.00024	<0.0048	<0.0012	0.0018	0.00012	<0.0012	<0.00012	< 0.00019	<0.00095	0.002	< 0.00012	< 0.00095	0.000629	<0.0012	0.00053
	10000		Subslab	0.02	< 0.048	< 0.96	<0.24	0.36	0.024	<0.24	< 0.024	<0.038	< 0.19	0.4	< 0.024	<0.19	0.1258	< 0.24	0.106
			Unattenuated	1	<2.5	<50	<13	15	2.6	<13	<5	<2	<1.3	<15	<1.3	<0.75	<0.75	<13	<1.5
SV13	2018-09-12	0.85	Outdoor Exposure	0.0001	< 0.00025	< 0.005	<0.0013	0.0015	0.00026	<0.0013	<0.0005	<0.0002	< 0.00013	<0.0015	<0.00013	<0.000075	<0.000075	< 0.0013	< 0.00015
			Subslab	0.02	< 0.05	<1	<0.26	0.3	0.052	< 0.26	<0.1	<0.04	< 0.026	<0.3	<0.026	<0.015	<0.015	< 0.26	< 0.03
	2018-09-12 0.85	. Inc. 191	Unattenuated	-	<2	<40	<10	12	<1	<10	<4	<1.6	<1	1230	<1	<0.6	7.44	<10	<1.2
SV14		0.85	Outdoor Exposure	0.0001	< 0.0002	<0.004	< 0.001	0.0012	< 0.0001	<0.001	<0.0004	<0.00016	< 0.0001	0.123	<0.0001	<0.00006	0.000744	< 0.001	< 0.00012
			Subslab	0.02	< 0.04	<0.8	<0.2	0.24	< 0.02	<0.2	<0.08	< 0.032	<0.02	24.6	<0.02	<0.012	0.1488	<0.2	<0.024
7			Unattenuated	-	<2	<41	<10	18	<1	<10	<4.1	<1.6	<1	7190	<1	<0.61	896	23	<1.2
SV15	2018-09-12	0.85	Outdoor Exposure	0.0001	<0.0002	<0.0041	<0.001	0.0018	< 0.0001	<0.001	<0.00041	<0.00016	<0.0001	0.719	<0.0001	<0.000061	0.0896	0.0023	< 0.00012
			Subslab	0.02	< 0.04	<0.82	<0.2	0.36	<0.02	<0.2	<0.082	< 0.032	<0.02	143.8	<0.02	<0.0122	17.92	0.46	< 0.024
			Unattenuated		<2.3	<45	<11	170	24.2	<100	15.8	<1.8	<1.1	<14	<1.1	<1.4	57	<11	250
SV16	2018-09-12	0.85	Outdoor Exposure	0.0001	< 0.00023	<0.0045	<0.0011	0.017	0.00242	<0.01	0.00158	<0.00018	<0.00011	<0.0014	<0.00011	<0.00014	0.0057	<0.0011	0.025
			Subslab	0.02	< 0.046	<0.9	<0.22	3.4	0.484	<2	0.316	< 0.036	< 0.022	<0.28	<0.022	<0.028	1.14	<0.22	5
parties 1	11.00	11	Unattenuated		<2.5	<50	<13	67	<1.3	<20	<15	<2	<1.3	<15	<1.3	<0.75	10.5	<13	19.3
SV17	2018-09-12	0.85	Outdoor Exposure	0.0001	< 0.00025	<0.005	<0.0013	0.0067	<0.00013	<0.002	<0.0015	<0.0002	<0.00013	<0.0015	<0.00013	<0.000075	0.00105	<0.0013	0.00193
			Subslab	0.02	< 0.05	<1	<0.26	1.34	< 0.026	<0.4	<0.3	<0.04	< 0.026	<0.3	< 0.026	<0.015	0.21	<0.26	0.386
			Unattenuated		<1.9	<37	<9.3	157	5.73	<9.3	< 0.93	<1.5	<3.7	<11	< 0.93	<1.1	<0.56	<9.3	<1.1
SV18	2018-09-12	0.85	Outdoor Exposure	0.0001	< 0.00019	< 0.0037	<0.00093	0.0157	0.000573	<0.00093	<0.000093	<0.00015	< 0.00037	<0.0011	< 0.000093	<0.00011	<0.000056	<0.00093	< 0.00011
			Subslab	0.02	<0.038	<0.74	<0.186	3.14	0.1146	<0.186	<0.0186	< 0.03	< 0.074	<0.22	<0.0186	< 0.022	<0.0112	<0.186	<0.022
700 (0			Unattenuated	-	<1.7	<34	<8.6	179	6.69	<8.6	<0.86	<1.4	<45	<10	<0.86	<1	<0.52	<8.6	<1
Z03 (Dup of SV18)	2018-09-12	0.85	Outdoor Exposure	0.0001	<0.00017	<0.0034	<0.00086	0.0179	0.000669	<0.00086	<0.000086	<0.00014	< 0.0045	<0.001	<0.000086	<0.0001	<0.000052	<0.00086	<0.0001
0,10			Subslab	0.02	< 0.034	<0.68	<0.172	3.58	0.1338	< 0.172	< 0.0172	<0.028	<0.9	<0.2	<0.0172	<0.02	<0.0104	<0.172	<0.02
			Unattenuated		100			- SE	J (i					<15			<0.13	1_ 3L	, Tel
вно2м	2019-03-16	1.2	Outdoor Exposure	0.0001	Ŧ.				7	-		7-7-1		<0.0015	3		<0.000013		
			Subslab	0.02		E 33-1	2 - 2 - 1	1 - 1	4 - 13	1 000				< 0.3			< 0.0026		1 16-11

Appendix 1 Current Title Information

File Reference: 5355-01.02 Requestor: Carla Shaw

Declared Value \$1074366

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Land Title District VANCOUVER
Land Title Office VANCOUVER

Title Number CA4888135 From Title Number BW133973

Application Received 2015-12-18

Application Entered 2016-01-04

Registered Owner in Fee Simple

Registered Owner/Mailing Address: PROVIDENCE HEALTH CARE SOCIETY, INC.NO. S41359

1081 BURRARD STREET

VANCOUVER, BC

V6Z 1Y6

Taxation Authority Vancouver, City of

Description of Land

Parcel Identifier: 010-813-217

Legal Description:

LOT 19 DISTRICT LOTS 181, 196 AND 2037 PLAN 6780

Legal Notations

NOTICE OF INTEREST, BUILDERS LIEN ACT (S.3(2)), SEE CA4888141

FILED 2015-12-18

Charges, Liens and Interests NONE

Duplicate Indefeasible TitleNONE OUTSTANDING

Transfers NONE

File Reference: 5355-01.02 Requestor: Carla Shaw

Declared Value \$43286000

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Land Title District VANCOUVER
Land Title Office VANCOUVER

Title Number CA4888136 From Title Number BW133974

Application Received 2015-12-18

Application Entered 2016-01-04

Registered Owner in Fee Simple

Registered Owner/Mailing Address: PROVIDENCE HEALTH CARE SOCIETY, INC.NO. S41359

1081 BURRARD STREET

VANCOUVER, BC

V6Z 1Y6

Taxation Authority Vancouver, City of

Description of Land

Parcel Identifier: 018-550-185

Legal Description:

LOT A DISTRICT LOTS 196 AND 2037 PLAN LMP14138

Legal Notations

NOTICE OF INTEREST, BUILDERS LIEN ACT (S.3(2)), SEE CA4888141

FILED 2015-12-18

Charges, Liens and Interests

Nature: RESERVATION

Registration Number: 749M

Registration Date and Time: 1935-10-10 13:15
Registered Owner: CITY OF VANCOUVER

Remarks: INTER ALIA SEE 23356I

Nature: RESERVATION

Registration Number: 1118M

Registration Date and Time: 1935-12-17 13:30 Registered Owner: CITY OF VANCOUVER

Remarks: INTER ALIA

SEE 23356I

Title Number: CA4888136 TITLE SEARCH PRINT Page 1 of 3

File Reference: 5355-01.02 Requestor: Carla Shaw Declared Value \$43286000

Nature: EASEMENT Registration Number: 15517M

Registration Date and Time: 1939-11-28 14:06
Registered Owner: CITY OF VANCOUVER

Remarks: INTER ALIA

AS IN SKETCH ANNEXED

Nature: EASEMENT AND INDEMNITY AGREEMENT

Registration Number: GC64088

Registration Date and Time: 1989-05-11 13:27
Registered Owner: CITY OF VANCOUVER
Remarks: EXTENDED BY BG466224

Nature: COVENANT Registration Number: BG466237

Registration Date and Time: 1993-11-29 11:58
Registered Owner: CITY OF VANCOUVER
Remarks: L.T.A. SEC. 215

SEE BG466234 CLAUSE 4.2

Nature: EASEMENT AND INDEMNITY AGREEMENT

Registration Number: BG466224

Registration Date and Time: 1993-12-29 11:56
Registered Owner: CITY OF VANCOUVER
Remarks: EXTENSION OF GC64088

Nature: STATUTORY RIGHT OF WAY

Registration Number: BG466230

Registration Date and Time: 1993-12-29 11:57
Registered Owner: CITY OF VANCOUVER
Remarks: PART IN PLAN LMP14139

Nature: STATUTORY RIGHT OF WAY

Registration Number: BG466232

Registration Date and Time: 1993-12-29 11:57
Registered Owner: CITY OF VANCOUVER
Remarks: PART IN PLAN LMP14140

Nature: COVENANT Registration Number: BG466234

Registration Date and Time: 1993-12-29 11:58
Registered Owner: CITY OF VANCOUVER
Remarks: L.T.A. SEC. 215

CLAUSE 2.1

File Reference: 5355-01.02 Requestor: Carla Shaw Declared Value \$43286000

Nature: COVENANT Registration Number: BG466235

Registration Date and Time: 1993-12-29 11:58
Registered Owner: CITY OF VANCOUVER
Remarks: L.T.A. SEC. 215

SEE BG466234 CLAUSE 3.1

Nature: COVENANT Registration Number: BG466236

Registration Date and Time: 1993-12-29 11:58
Registered Owner: CITY OF VANCOUVER
Remarks: L.T.A. SEC. 215

SEE BG466234 CLAUSE 3.2

Nature: STATUTORY RIGHT OF WAY

Registration Number: BL119275

Registration Date and Time: 1997-04-07 14:16
Registered Owner: CITY OF VANCOUVER
Remarks: PLAN LMP32583

Nature: COVENANT Registration Number: BL119277

Registration Date and Time: 1997-04-07 14:17
Registered Owner: CITY OF VANCOUVER

Nature: STATUTORY RIGHT OF WAY

Registration Number: BL119279

Registration Date and Time: 1997-04-07 14:17
Registered Owner: CITY OF VANCOUVER

Nature: EQUITABLE CHARGE

Registration Number: BL119281

Registration Date and Time: 1997-04-07 14:17 Registered Owner: CITY OF VANCOUVER

Duplicate Indefeasible TitleNONE OUTSTANDING

Transfers NONE

File Reference: 5355-01.02 Requestor: Carla Shaw

Declared Value \$1074366

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Land Title District VANCOUVER
Land Title Office VANCOUVER

Title Number CA4888137 From Title Number BW133971

Application Received 2015-12-18

Application Entered 2016-01-04

Registered Owner in Fee Simple

Registered Owner/Mailing Address: PROVIDENCE HEALTH CARE SOCIETY, INC.NO. S41359

1081 BURRARD STREET

VANCOUVER, BC

V6Z 1Y6

Taxation Authority Vancouver, City of

Description of Land

Parcel Identifier: 008-776-300

Legal Description:

LOT C BLOCKS 15 TO 18 DISTRICT LOTS 196 AND 2037 PLAN 12884

Legal Notations

NOTICE OF INTEREST, BUILDERS LIEN ACT (S.3(2)), SEE CA4888141

FILED 2015-12-18

Charges, Liens and Interests NONE

Duplicate Indefeasible TitleNONE OUTSTANDING

Transfers NONE

File Reference: 5355-01.02 Requestor: Carla Shaw

Declared Value \$1074366

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Land Title District VANCOUVER
Land Title Office VANCOUVER

Title Number CA4888138 From Title Number BW133972

Application Received 2015-12-18

Application Entered 2016-01-04

Registered Owner in Fee Simple

Registered Owner/Mailing Address: PROVIDENCE HEALTH CARE SOCIETY, INC.NO. S41359

1081 BURRARD STREET

VANCOUVER, BC

V6Z 1Y6

Taxation Authority Vancouver, City of

Description of Land

Parcel Identifier: 008-776-326

Legal Description:

LOT D BLOCKS 15 TO 18 DISTRICT LOTS 196 AND 2037 PLAN 12884

Legal Notations

NOTICE OF INTEREST, BUILDERS LIEN ACT (S.3(2)), SEE CA4888141

FILED 2015-12-18

Charges, Liens and Interests NONE

Duplicate Indefeasible TitleNONE OUTSTANDING

Transfers NONE

File Reference: 5355-01.02 Requestor: Carla Shaw

Declared Value \$1049000

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Land Title District VANCOUVER
Land Title Office VANCOUVER

Title Number CA4888139 From Title Number BW133970

Application Received 2015-12-18

Application Entered 2016-01-04

Registered Owner in Fee Simple

Registered Owner/Mailing Address: PROVIDENCE HEALTH CARE SOCIETY, INC.NO. S41359

1081 BURRARD STREET

VANCOUVER, BC

V6Z 1Y6

Taxation Authority Vancouver, City of

Description of Land

Parcel Identifier: 008-126-780

Legal Description:

LOT E DISTRICT LOTS 196 AND 2037 PLAN 13449

Legal Notations

NOTICE OF INTEREST, BUILDERS LIEN ACT (S.3(2)), SEE CA4888141

FILED 2015-12-18

Charges, Liens and Interests

Nature: STATUTORY RIGHT OF WAY

Registration Number: BH79201A

Registration Date and Time: 1994-03-08 13:31 Registered Owner: CITY OF VANCOUVER

Remarks: INTER ALIA

PART IN PLAN LMP15416

Nature: OPTION TO PURCHASE

Registration Number: BR11537

Registration Date and Time: 2001-01-18 15:04 Registered Owner: CITY OF VANCOUVER

Remarks: INTER ALIA

PART IN PLAN LMP48594

Title Number: CA4888139 TITLE SEARCH PRINT Page 1 of 2

File Reference: 5355-01.02 Requestor: Carla Shaw Declared Value \$1049000

Nature: COVENANT Registration Number: BR11538

Registration Date and Time: 2001-01-18 15:04 Registered Owner: CITY OF VANCOUVER

Remarks: INTER ALIA

Duplicate Indefeasible TitleNONE OUTSTANDING

Transfers NONE

File Reference: 5355-01.02 Requestor: Carla Shaw

Declared Value \$2257900

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Land Title District VANCOUVER
Land Title Office VANCOUVER

Title Number CA4888140 From Title Number BW133969

Application Received 2015-12-18

Application Entered 2016-01-04

Registered Owner in Fee Simple

Registered Owner/Mailing Address: PROVIDENCE HEALTH CARE SOCIETY, INC.NO. S41359

1081 BURRARD STREET

VANCOUVER, BC

V6Z 1Y6

Taxation Authority Vancouver, City of

Description of Land

Parcel Identifier: 008-126-798

Legal Description:

LOT F DISTRICT LOTS 196 AND 2037 PLAN 13449

Legal Notations

NOTICE OF INTEREST, BUILDERS LIEN ACT (S.3(2)), SEE CA4888141

FILED 2015-12-18

Charges, Liens and Interests

Nature: STATUTORY RIGHT OF WAY

Registration Number: BH79201A

Registration Date and Time: 1994-03-08 13:31 Registered Owner: CITY OF VANCOUVER

Remarks: INTER ALIA

PART IN PLAN LMP15416

Nature: OPTION TO PURCHASE

Registration Number: BR11537

Registration Date and Time: 2001-01-18 15:04 Registered Owner: CITY OF VANCOUVER

Remarks: INTER ALIA

PART IN PLAN LMP48594

File Reference: 5355-01.02 Requestor: Carla Shaw Declared Value \$2257900

Nature: COVENANT Registration Number: BR11538

Registration Date and Time: 2001-01-18 15:04 Registered Owner: CITY OF VANCOUVER

Remarks: INTER ALIA

Duplicate Indefeasible TitleNONE OUTSTANDING

Transfers NONE

Appendix 2
PGL Standard Methods

Appendix 3

Confirmation of Remediation at 370 and 456 Prior Street

July 22, 2015

Mr. Steve Lippman 456 Prior Street Holdings Ltd. 4th Floor – 52A Powell Street Vancouver, BC V6A 1E7

Dear Mr. Lippman:

Re: Report of Findings – Confirmation of Remediation 370 and 456 Prior Street, Vancouver, BC

Droinet No. 12240

Project No. 12349

This letter report presents the findings of a KEYSTONE ENVIRONMENTAL[™] Confirmation of Remediation program (COR) prepared for the properties located at 370 and 456 Prior Street, in the City of Vancouver, BC (the Site)¹. It is understood that this report will be used in conjunction with the potential divestment of the Site.

1. BACKGROUND

Keystone Environmental conducted a Phase I and II ESA on the properties listed as 370 and 456 Prior Street in May and August of 2014, respectively.

The Phase I ESA indicated that the Site and area in the immediate vicinity of the Site was occupied by a former shingle manufacturer in circa 1910. From the early 1920s, or earlier, to the mid-1940s, a former building was located on the west portion of 436 Prior Street (currently listed as 456 Prior Street). Historical records indicated that the former building was occupied by a contractor's warehouse (Grant Smith & Co.) and a former logging supply operation (F & F Equipment). In the late 1940s, the former building was removed and the west and central portions of the existing warehouse were constructed. The east portion of the existing warehouse was added in the late 1950s/early 1960s. A former rail spur was located on the south perimeter of the Site, adjacent to the south of the existing warehouse, from the late 1940s to the mid-1970s. The rail spur was removed in the late 1970s, and the Site has remained relatively unchanged since the 1970s.

A portion of the City of Vancouver property listed as 410 Prior Street was also remediated as a component of this program due to off-Site migration of hydrocarbon contamination.

The Phase I ESA identified the following areas of potential environmental concern (APECs):

- APEC 1 Fill Material of unknown origin and quality.
- APEC 2 Potential for heating oil and/or other underground storage tanks (USTs).
- APEC 3 Off-Site former smelting and metal operations at 310 Prior Street from the 1930s to the 1960s (adjacent to the west of the Site).
- **APEC 4** Off-Site former ink manufacturing operation at 496 Prior Street from the 1930s to the 1960s (adjacent to the east of the Site).
- APEC 5 Off-Site former rail yard at 1002 Station Street from the 1920s to the 1980s (adjacent to the south-southwest of the Site).

During the Phase I ESA Site reconnaissance, two cut-off metal pipes (potentially indicative of vent pipes) and a circular metal cover (indicative of a fill port) were observed on the northwest side of the building. A ground penetrating radar scan conducted as part of the Phase II ESA identified a subsurface anomaly (consistent of the size and shape of an underground storage tank (UST)) on the northwest side of the building.

The Phase II ESA included the drilling of seven boreholes completed as groundwater monitoring wells and the sampling of seven groundwater monitoring wells. Hydrocarbon contamination, in both soil and groundwater, was identified on the south side of the suspect UST.

In February 2015, Keystone Environmental supervised the removal of an approximately 13,000 L UST, containing approximately 520 L of a mix of gasoline and water. Approximately, 30 m³ of suspect hydrocarbon contaminated soil located around the UST was also removed. The excavation was advanced until soil headspace vapours were deemed to be low and odorous soil was not observed. The final excavation extent was approximately 8 m by 6 m and 2.7 m deep. Suspect soil was removed off-site for disposal at the Sumas Bioremediation (Sumas) facility, in Burnaby BC. A copy of the UST removal report is attached in Appendix A.

Following the UST removal and soil remediation, additional drilling was conducted to investigate the groundwater and delineate the residual soil contamination. Nine boreholes, eight of which were installed as monitoring wells, were advanced to the north, northeast, southeast, south, southwest and northwest of the excavation extent during two separate drilling events. Soil analytical results exceeding the CSR IL/CL and AW_M standards were identified at MW15-9 and MW15-17 and groundwater concentrations exceeding the CSR AW_M standards were identified at MW15-8 and MW15-9. The sample locations are presented on Figure 1 and the soil and groundwater analytical results are presented on Figures 2 and 3.

Additional investigation of the aquifer hydraulic conductivity was conducted as part of this confirmation of remediation and supplemental investigation, therefore the applicability of DW is discussed in detail in Section 3.2. The previous results were compared to the CSR IL/CL and AW_M standards only and the table below summarizes the exceedances that were retained as Areas of Environmental Concern (AECs):

Table 1.1 Analytical results above the CSR IL/CL and AWM standards

APEC/AEC	Location (depth in mbg for the soil sample)	Soil (mg/kg)	Groundwater (ug/L)
	MW14-5 (0.6)	Copper = 285 (IL/CL = 90-250) Zinc = 409 (IL/CL = 150-600)	-
1. Fill	MW14-6 (0.8)	Zinc = 435 (IL/CL = 150-600)	-
	BH15-19 (0.6)	Copper = 2,160 (IL/CL = 90-250) Zinc = 1,210 (IL/CL = 150-600)	-
	MW14-4 (1.5)	VH = 210 (CL/IL = 200)	LEPHw = 3,300 > 500 AW _M naphthalene = 110 > 10 AW _M VPH = 3,300 > 200 AW _M
	MW15-8	-	LEPHw = 1,800 > 500 AW _M
2. UST	UST MW15-9 (1.8) Ethylbenzene = 97 (CL/IL = 200) Xylenes = 330 (CL/IL = 500) VH = 2,200 (CL/IL = 200)	Ethylbenzene = 97 (CL/IL = 20) Xylenes = 330 (CL/IL = 50) VH = 2,200 (CL/IL = 200) VPH = 1,800 (CL/IL = 200)	LEPHw = 4,000 > 500 AW _M naphthalene = 190 > 10 AW _M VPH = 3,400 > 200 AW _M
	MW15-17 (1.5)	VH = 870 (CL/IL = 200) VPH = 860 (CL/IL = 200)	-

Italic concentration exceeds IL standards
BTEX – Benzene, Toluene, Ethylbenzene, Xylenes
LEPH – Light Extractable Petroleum Hydrocarbons
HEPH – Heavy Extractable Petroleum Hydrocarbons
* standards are pH dependent

Bold concentration exceeds CL standards VPH – Volatile Petroleum Hydrocarbons PAH – Polycyclic Aromatic Hydrocarbon No exceedances or sample not analyzed AEC – Area of Environmental Concern

Therefore, APECs 1 and 2 were retained as areas of environmental concern (AEC) requiring further work. The Site and Sample Location Plan is presented on Figure 1. Investigation results are included in Tables 1 through 3 for soil and 4 through 6 for groundwater and on Figures 2 (soil) and 3 (groundwater). Previous documents are included in Appendix A.

2. STUDY LIMITATIONS

Findings presented in this report are based upon the results of a field investigation including soil, groundwater and soil vapour sample analyses. Geologic observations and analytical results reflect conditions encountered at specific test locations. Site conditions (geologic, hydrogeological, and chemical characterization) may vary from that extrapolated from the data collected during this investigation. Consequently, while findings and conclusions documented in this report have been prepared in a manner consistent with that level of care and skill normally exercised by other members of the environmental science and engineering profession practising under similar circumstances in the area at the time of the performance of the work, this report is not intended, nor is it able to provide a totally comprehensive review of present or past site environmental conditions.

This report has been prepared solely for the internal use of 456 Prior Street Holdings Ltd., pursuant to the agreement between Keystone Environmental Ltd. and 456 Prior Street Holdings Ltd. A copy of the general terms and conditions associated with this agreement is attached. By using the report, 456 Prior Street Holdings Ltd. agrees that they will review and use the report in its entirety. Any use which other parties make of this report, or any reliance on or decisions made based on it, are the responsibility of such parties. Keystone Environmental Ltd. accepts no responsibility for damages, if any, suffered by other parties as a result of decisions made or actions based on this report.

3. APPLICABLE STANDARDS

The applicable provincial regulations used for comparison of analytical results are contained in the following documents:

- Environmental Management Act (EMA), ([SBC 2003], Chapter 53 assented to March 23, 2003).
- Contaminated Sites Regulation (CSR), 375/96 O.C. 1480/96 including amendments up to B.C. Reg. 375/96 O.C. 1480/96 and M271/2004, includes amendments up to B.C. Regulation 4/2014, January 31, 2014.
- Hazardous Waste Regulation (HWR) (BC Reg. 63/88 O.C. 268/88, including amendments up to B.C. Reg. 63/2009, April 1, 2009).

3.1 Soil Standards

The Contaminated Sites Regulation (CSR) provides generic and matrix numerical soil standards for different land use categories. The matrix numerical soil standards provide standards for potential contaminants based on several site-specific factors (e.g., intake of contaminated soil, toxicity to soil invertebrates and plants). To determine the appropriate standard for a contaminant, the applicable factors for a site are first selected. The lowest standard of those for applicable factors for the site is then defined as the standard that will apply.

The Site is current zoned and used for industrial purposes. Future use of the Site may include commercial uses; therefore the CSR standards for industrial land use (IL) and commercial land use (CL) have been applied.

3.2 Groundwater Standards

The CSR contains requirements to ensure that groundwater at a site is suitable for current and future uses and is of adequate quality to protect adjacent water uses.

Aguatic Water Use Standards – Fresh and Marine Water

The CSR Aquatic Life Water Use (AW) standards apply to groundwater at sites that are within 500 m or less of a surface water body containing aquatic life, or where there is the potential for contaminated groundwater to reach within 500 m of a surface water body containing aquatic life. The east end of False Creek (the closest surface water body) is located approximately 550 m to the west southwest of the Site at its closest point. False Creek is a marine aquatic environment; therefore, the Marine (AWM) aquatic life standard has been applied to the Site in addition the former False Creek high water mark is located adjacent to the south of the Site as shown on Figure 1.

Drinking Water Use Standards

The evaluation of whether drinking water (DW) standards are applicable is conducted in two stages, first for the current situation and then for the potential future situation. The answer to both the current and the future evaluation must be "no" to eliminate the application of the DW standards to the Site.

<u>Current Use:</u> For current use evaluation, the CSR DW standards are applicable at a site where the groundwater or surface water at or near the site (within 500 m of the site or the leading edge of a groundwater contamination source or, if groundwater flow direction has been demonstrated, 100 m up-gradient or 500 m down-gradient of the site or contamination source) is currently used for drinking water.

<u>Future Use – Part 1:</u> The potential for the site to support drinking water use is determined under this scenario. If there is a suitable aquifer (hydraulic conductivity greater than 1 x 10⁻⁶ m/s and aquifer yield greater than 1.3 L/min) present then there is the potential for DW standards to apply and further evaluation is required. If there is not a suitable aquifer present, then DW standards do not apply.

<u>Future Use – Part 2:</u> If the answer for either of the following two questions is "yes," then DW standards do not apply to the site:

- If the natural quality of groundwater in the aquifer is unsuitable for drinking water use (total dissolved solids (TDS) are greater than 4,000 mg/L, or is contained within organic soils or muskeg).
- If there is a confining geological unit that adequately protects the aquifer (greater than or equal to 5 m thick, bulk hydraulic conductivity less than or equal to 1 x 10⁻⁷ m/s, relatively uniform and free of fractures, continuous across the extent and predicted migration pathway of the shallow subsurface contamination, and the lower 5 m has not been penetrated by contamination from the above units).

In regards to current use consideration, the following states the rationale why DW standards for current use are not applicable to the Site:

- No current use of the groundwater for drinking water purposes within 500 m of the Site (Water wells figure included in Appendix B).
- The Site and surrounding area are serviced by a municipal water supply that does not rely on groundwater.

In regards to future use consideration, the following multiple lines of evidence assist with the rationale for why DW standards are considered unlikely to apply:

The south portion of the Site contains fill of unknown origin and has a long history of
industrial use with multiple sources and multiple landowners and is contiguous with the wide
area fill confirmed by the MOE for the False Creek Area as shown in the attached figure
from the MOE.

- The perched artificial aquifer identified in historical fill material of known poor quality is less than 2 metre in depth (See Photograph 2 in Appendix C for picture of False Creek fill material identified at the Site).
- An aquifer was not identified below the Site according to the BC Water Resource Atlas (Water wells figure included in Appendix B).

Hydrogeological data for the till unit from the Site and from nearby sites, show hydraulic conductivity below 1 x 10⁻⁶ as outlined in MOE Technical Guidance Document 6 (TG6), which is considered insufficient permeability to allow suitable extraction for drinking water use (Slug test results included in Appendix B). The till unit is underlain with Sandstone Bedrock.

The following support documents are included in Appendix B:

- A copy of the figure provided in the determination issued by the Ministry of Environment in December 13, 2012 for MOE Site ID: 12722 showing Area Wide Historical Fill material in the area that is contiguous with our Site.
- A copy of the figure produced from the Contaminated Sites Approved Professionals Society (CSAP Society) website showing properties where DW was not considered applicable for issued instruments in the vicinity of the Site (consulted on July 17, 2015).
- A copy of the figure produced from the BC Water Atlas Map (consulted on July 20, 2015) with a 500 m radius from the Site and the water wells and aquifer layers turned on (water wells and an aquifer were not identified in the vicinity of the Site).
- The borehole log for MW15-19 and the slug test results conducted on June 16, 2015.

Therefore, based on the information provided above, DW standards are considered unlikely to apply to the Site².

Irrigation and Livestock Water Use Standards

Irrigation (IW) and livestock (LW) watering water use standards apply to groundwater located at sites with agricultural land use or are located within a provincial Agricultural Land Reserve (ALR), unless the geological unit where contamination occurs has a hydraulic conductivity less than 10⁻⁶ m/s or if wells or points of diversion used for livestock watering or irrigation purposes are located greater than 500 m of the Site.

The Site is not located within the ALR. Agricultural land and operations, and irrigation and livestock water wells were not identified within 500 m of the Site. Therefore, the IW and LW standards are not considered applicable to the Site.

Additional investigation of the hydraulic conductivity and submission for a Drinking Water Determination may be required prior to an application for a Ministry Instrument (if required).

Project 12349 / July 2015

3.3 Soil Vapour Standards

The September 2010 MOE *Technical Guidance Document 4: Vapour Investigation and Remediation,* recommends that vapour be investigated whenever there are either volatile or semi-volatile potential constituents of concern from Schedule 2 activities that are listed in Schedule 11 of the CSR, or if a potential vapour exposure pathway for constituents of concern (COCs) exists from neighbouring properties within 30 m.

The Site is current zoned and used for industrial purposes. Future use of the Site may include commercial uses; therefore the CSR standards for industrial land use (IL) and commercial land use (CL) have been applied.

4. SUPLEMENTAL INVESTIGATION AND CONFIRMATION OF REMEDIATION

The scope of this work included soil and groundwater confirmation of remediation associated with AEC 1 and 2 and a vapour investigation³. The investigation and confirmation of remediation programs were conducted from June 1 through July 2, 2015.

For the purposes of the remedial excavation, the Site consists of two properties owned by 456 Prior Street Holdings Ltd. Inc. No. BC1017782 (370 and 456 Prior Street), and a portion of a City of Vancouver property (410 Prior Street) where hydrocarbon contamination associated with the underground storage tank (AEC 2) migrated to the City of Vancouver property. Notification of the off-Site migration of contamination was presented to the Ministry of Environment on February 3, 2015.

4.1 Scope of work

The investigation component scope of work included a preliminary hydrogeological investigation (discussed in Section 4.3 of this report) and soil vapour modeling and sampling (discussed in Section 4.4 of this report). The hydraulic conductivity testing purpose was to investigate Drinking Water standards applicability to the Site. The purpose of the modeling of vapour concentrations from worst-case scenario soil and groundwater investigation results was to conservatively identify the locations that required soil vapour sampling as a vapour investigation was not conducted during the Phase II ESA conducted for the Site.

The purpose of the confirmation of remediation was to remediate the constituents of concern identified in soil, groundwater and soil vapour. The scope of work of the confirmation of remediation consisted of the following tasks:

- Document the excavation and off-site disposal conducted by Sumas Remediation Services Inc. of soil exceeding the CSR IL/CL standards.
- Submit a Notification of Independent Remediation to the Ministry of Environment (NIR).

Environmental
Knowledge-Driven Results

³ Vapour was not investigated as a component of the ESA II.

Project 12349 / July 2015

[×]

- Collect confirmatory soil samples and lithological information including colour, soil type, moisture and organic headspace measurements from the walls and base of the remedial excavation areas, and submit the confirmatory soil samples for laboratory analyses.
- Collect post-remediation confirmatory groundwater samples.
- Collect post-remediation vapour samples.
- Document the results of the investigation and confirmation of remediation in this letter report.

4.2 Soil Remediation Activities

The soil remediation activities completed by excavator at the Site were carried out between June 1 through 4, 2015. The excavated soils were loaded into trucks for off-Site disposal at the Sumas facility, in Burnaby, BC.

Based on the confirmatory results, additional remedial excavation was conducted with the use of vacuum truck on June 25, 2015. The vacuum truck contents were also transported for off-Site disposal at Sumas. The remedial excavation location plan and the associated confirmatory soil sampling locations are presented on Figure 4. Remedial activities are discussed in the following sections.

It was anticipated that remediation of constituents of concern in groundwater and vapours exceeding the CSR AW_M or IL/CL standards would be completed by removal of source soils during the remedial excavation.

4.2.1 Soil Sampling Methodology

Wall and base confirmatory soil samples were collected by Keystone Environmental personnel from the bucket of the excavator or by hand when the excavation was less than 1.2 m in depth. Confirmatory samples were labelled and stored in laboratory supplied ice-filled coolers while in the field and then transported to Maxxam under chain of custody documentation. A second soil sample was collected at several locations and placed in a polyethylene bag for field screening purposes with the use of a photo-ionization instrument (PID).

4.2.2 Soil Quality Observations Field Measurements

The soil headspace vapour measurements ranged from 0 to 50 parts per million by volume (ppmv), which are not considered to be elevated. Above 75 ppm is typically considered elevated.

4.2.3 Confirmatory Soil Analytical Results

The following table summarizes the soil sample analyses conducted during this confirmation of remediation activities or identified investigation samples that were used as confirmatory samples. Although not discussed in this section, confirmatory samples collected during the UST removal are included with the confirmatory samples collected during this remedial excavation in Tables 7 through 8 and on Figure 4.

Table 4-1 **Soil Sample Analyses**

AEC	Sample Location	Analyses
AEC 1 – Fill Material	CS15-14 through CS15-23 and BH15-18	Copper and/or zinc
AEC 2 –	⁴ CS15-6, CS15-7, CS15-9, CS15-10, CS15-11,	LEPH, HEPH, PAHs, VPH
UST	CS15-13 and MW15-17	and BTEX

BTEX - Benzene, Toluene, Ethylbenzene, Xylenes

VPH - Volatile Petroleum Hydrocarbons PAH – Polycyclic Aromatic Hydrocarbon

LEPH – Light Extractable Petroleum Hydrocarbons

HEPH – Heavy Extractable Petroleum Hydrocarbons

Confirmatory soil analytical results are presented in Tables 7 and 8, and on Figure 4. The laboratory certificates of analyses are attached in Appendix F.

4.2.4 AEC 1 – Remedial Excavation of Fill Material

During the Phase II ESA copper and zinc were identified above the CSR IL/CL standards at MW14-4 and BH15-19 on the northern portion of 370 Prior Street and zinc was identified above the CSR CL/IL standard at MW14-6 on the south portion of 370 Prior Street. On June 3, 2015 a remedial excavation was conducted in the vicinity of MW14-6 (Excavation A) and on June 4, 2015 a remedial excavation was conducted in the vicinity of MW14-4 and BH15-19 (Excavation B).

Excavation A

Zinc exceeded the CSR IL standards at MW14-6 located on the southern boundary of 370 Prior Street. To remove the fill material exceeding the CSR IL standards at MW14-6 a remedial excavation was completed in the vicinity of MW14-6. At the conclusion of the remediation, four sidewall samples [CS15-14 (0.8) through CS15-17 (0.8)] and one base sample [CS15-18 (1.3)] were collected and analyzed for zinc. Confirmatory soil analytical results for zinc (516 ug/g) at CS15-14 (0.8) collected at the north sidewall was above the CSR IL and CL standards. The concentration of zinc at the remaining confirmatory soil samples were less than the CSR IL/CL standards.

During the initial excavation, the extent to the north (CS15-14) was limited by the storm line trench. Therefore, the excavator remediation was conducted as close as possible to the storm line with considerations to the utility integrity and health and safety. It was determined that if the soils on the north confirmatory wall exceeded the CSR IL /CL standards, further remediation would be conducted by vacuum excavation to maintain the integrity of the storm line.

Based on the residual exceedance at CS15-14 (located on the north wall of the excavation). on June 25, 2015, Badger Daylighting Inc. (Badger), of Vancouver, BC was on-Site to extend the remedial excavation to the north between the excavated area and the storm line with the

Samples CS15-1 through CS15-5 were collected during tank removal and the details are included in the attached tables 7 and 8 and on figure 4.

Project 12349 / July 2015

use of a vacuum truck. The excavation was extended by approximately 1 m to the north and sample CS15-23 (0.8) was collected to replace sample CS15-14 (0.8). The zinc analytical result at CS15-23 (0.8) was less than the CSR IL/CL standards, thus Excavation Area A has been remediated to comply with the CSR standards applicable to the Site.

The north, south, east and west walls at the final extent of Excavation A were approximately 7.5 by 4 m and the maximum depth was 1.3 mbg for an approximate volume of 40 m³. Confirmatory soil analytical results from Excavation Area A are presented in Tables 7 and 8, and on Figure 4. Laboratory analytical reports are attached in Appendix F.

Excavation B

Following the removal of the contaminated fill material from the vicinity of MW14-5 and BH15-19, four sidewall samples [CS15-19 (0.6) through CS15-21 (0.6)] and one base sample [CS15-22 (1.1)] were collected and analyzed for copper and zinc. The investigation sample BH15-18 (0.8) was used to determine the extent to the north. The west confirmatory sample was collected on the property line between the 370 Prior Street property and the adjacent City of Vancouver property. As the AEC is area wide fill material of unknown origin associated with False Creek infilling, chasing the fill material off-Site is not warranted as a component of this excavation. The Confirmatory soil analytical results were less than the CSR IL/CL standards in the other confirmatory samples; therefore, Excavation Area B has been remediated to comply with the CSR standards applicable to the Site.

The north, south, east and west walls at the final extent of Excavation B were approximately 9 by 4 m and the maximum depth was 1.1 mbg for an approximate volume of 40 m³. Confirmatory soil analytical results from Excavation Area B are presented in Tables 7 and 8, and on Figure 4. Laboratory analytical reports are attached in Appendix F.

4.2.5 AEC 2 – On-Site UST

A 13,000 L UST was decommissioned at the Site on February 3, 2015. The tank was suspected to have historically stored gasoline, and during the UST decommissioning a mix of gasoline and water was removed from the tank. The tank was observed in good condition. The tank was removed by Sumas and approximately 30 m³ of soils surrounding the tank was excavated and confirmatory soil samples CS15-1 through CS15-5 were collected at the time. Confirmatory samples analytical results were less than the CSR IL/CL standards. However, additional soil and groundwater hydrocarbon contamination likely associated with the former UST was identified in the confirmatory monitoring wells drilled at MW14-4, MW15-8, MW15-9 and MW15-17. Therefore; in June 2015 the remedial excavation was extended to remove the residual hydrocarbon contamination associated with the former UST.

Following the excavation of soils; confirmatory sidewall samples CS15-6 through CS15-12 and the confirmatory base sample CS15-7 (2.7) were collected and the sample from MW15-17 at 2.7 metres was used as an additional base confirmatory sample. Select confirmatory samples were submitted to the laboratory for light extractable petroleum hydrocarbons (LEPH), heavy extractable petroleum hydrocarbons (HEPH), naphthalene and benzene, toluene, ethylbenzene and xylenes (BTEX) and volatile petroleum hydrocarbons (VPH). The confirmatory analytical results were less than the CSR IL/CL standards.

The final extent to the west was limited by a storm line running north-south. The north, south, east and west walls at the final extent of UST Excavation were approximately 19.5 by 10 m, to a depth of 2.7 metres below grade, representing a volume⁵ of approximately 530 m³. The analytical results are presented on Tables 7 and 8 and on Figure 4. Laboratory analytical reports are attached in Appendix F.

4.2.6 Soil Disposal Summary

The volume of soil removed was estimated based on the measured area and depth of the excavation as shown on Figure 10. The inferred approximate volume of soil excavated and transported off-site to Sumas from the three excavation areas was 600 m³. This includes the volume of soil excavated from the Site during the previous UST pull in February 2015 and the area of the former UST. The total weight of soil claimed at the weigh scale at Sumas is 676.65 tonnes.

Typically, one cubic metre of soil is approximately equivalent to 1.3 to 1.5 tonnes in weight (m³) and it may vary according to the Site-specific type of soils. The fill material was mostly comprised by wood debris which is relatively lighter than silts and cobbles. Therefore, the estimated volume of soil removed in June 2015 based on measurements (520 m³) and tonnage reported by Sumas (676.65 tonnes) are close in comparison. A copy of the soil disposal summaries is attached at the end of the report in Appendix D.

4.2.7 Backfill

The excavation cavity was backfilled with imported river and Sechelt sand. Analytical results for LEPH, HEPH, polycyclic aromatic hydrocarbons (PAHs), VPH, BTEX and metals for the backfill soil sample BF15-1 were below the CSR IL/CL standards. Analytical results for the backfill sample are presented in Tables 9 and 10.

4.3 Groundwater Program

The groundwater program included the installation of three confirmatory monitoring wells (MW15-18 to MW15-20) with soil vapour attachments (SV15-18 to SV15-19) upon completion of the remedial excavation. The purpose of the post-remediation groundwater program was to confirm that groundwater contamination previously identified at the Site at MW14-4, MW15-8, MW15-9 and MW15-17 was remediated during the remedial excavation activities to meet the CSR AW_M standards. The purpose of the hydraulic testing was to investigate DW applicability to the Site. The location of the post-remedial groundwater monitoring wells is shown on Figure 5.

This area includes the February 2015 excavation and UST removal which calculates to a volume of about 80m³.

Project 12349 / July 2015

4.3.1 Monitoring Well Construction and Sampling

Monitoring wells were drilled and constructed on the Site by On-Track Drilling Inc. (On-track) of Coquitlam, BC. MW15-19 was drilled and constructed on June 11, 2015 and monitoring wells MW15-18 and MW15-20 on June 12, 2015.

The monitoring wells were constructed using hollow stem augers to remove sloughed soils and to provide a uniform filter sand pack thickness between the well screen and borehole walls. The monitoring well screen and casing pipe was lowered into the annulus of the hollow stem auger. Annular materials (filter sand and bentonite) were introduced to the hollow-stem auger as the auger was being slowly removed from the borehole. The depth of emplacement of the monitoring well screen was dependent on the depth of the apparent water table at each location and within specific strata to be assessed. The intent was to have the well screen intersect the groundwater table.

The monitoring well screens were 1.5 m long and had 0.25 mm slot width. The well pipe and screen were composed of 0.05 m diameter schedule 40 PVC. The solid PVC riser pipes extended from the top of the screen to the well head which was sealed with a J-Plug. Filter sand was placed as a filter pack around the well screen and to at least 0.3 m above the top of the screen. To provide a seal above the sand pack and reduce the potential for vertical migration of groundwater or infiltration of surface water into the well, bentonite chips were placed above the sand pack to a depth approximately 0.3 m below the surface grade. The monitoring wells were finished with flush mounted road boxes.

Following construction, the monitoring wells were monitored for water levels and well headspace vapour levels and were developed. MW15-19 was developed on June 12, 2015 and MW15-18 and MW15-20 were developed on June 16, 2015. Well development was conducted in preparation for groundwater sampling, by surging with high density polyethylene (HDPE) inertial lift tubing, one way valve, and a surge blocks prior to withdrawing a minimum of six times the well volume of water from the well, or developing the well to a dry condition three consecutive times.

Groundwater sampling at MW15-18 through MW15-20 was conducted on June 17 and June 25, 2015. Groundwater samples were collected by low flow sampling and inertial lift sampling techniques. A peristaltic pump with new, dedicated HDPE and silicone tubing was used with low flow sampling techniques to collect samples for the analysis of LEPHw, PAHs, VPHw, BTEX and/or dissolved metals. Inertial lift HDPE tubing and foot valve were used to collect samples for the analysis of VPHw and BTEX. Dissolved lead samples were field filtered using 0.45 micron filters.

Groundwater samples were placed in chilled coolers after sampling and for transport to Maxxam under standard chain of custody procedures. The samples collected at MW15-18 and MW15-19 were submitted for analyses of VPH, BTEX, LEPH and naphthalene. Samples from MW15-18 were also submitted for dissolved lead. Groundwater field Purge and Sample forms are included in Appendix E.

4.3.2 Groundwater Analytical Results

Analytical results for VPH, BTEX, LEPH and dissolved lead were less than the laboratory reported detection limits and therefore less than the CSR AW_M standards. Analytical results for naphthalene were less than the CSR AW_M standards. Analytical results are presented on Table 11 and Figure 5. Laboratory certificates are included in Appendix F.

4.3.3 Hydraulic Conductivity Testing

To evaluate the potential for future use, rising head slug/bail single well response tests were conducted in a groundwater monitoring well installed in the native silt unit below the fill material (MW15-17) on May 15, 2015. The hydraulic conductivity value of the silt unit from the slug test was 2.57 x 10⁻⁶ m/s just slightly above the 1 x 10⁻⁶ m/s outlined in MOE Technical Guidance Document 6 (TG6). A single well response pumping test was considered for this location since it is believed that the groundwater yield would not sustain continuous pumping through a long period of time at the Site. However, there were concerns regarding the integrity of this monitoring well due to issues faced during the drilling activities, such as (1) refusal during the first attempt and the drilling of a new borehole adjacent to the original one and (2) the use of solid stem auger technique. Therefore, the first results were not considered reliable as a preferential path or bridging of the monitoring well material could have occurred.

A new monitoring well was then installed within the native unit to replace MW15-17 and using hollow stem-technique at the post-remedial stage (MW15-19). Due to uncertainty of the results from MW15-17, replacement tests were conducted at the newly installed monitoring well (MW15-19).

The rising head slug/bail single well response tests was conducted twice at MW15-19 on June 16, 2015. This location is considered representative of the undisturbed native soil at the Site and surrounding areas. The recovery curve analyses portion of the test resulted in hydraulic conductivity values ranging from 1.21 x 10⁻⁷ m/s to 1.86 x 10⁻⁷ m/s. These results show that the till unit at the Site would likely not provide a typical well yield suitable to meet the requirements for a drinking water source as outlined in MOE TG6.

A copy of the borehole log for MW15-19 and the slug tests results are included in Appendix B.

4.4 Soil Vapour Program

4.4.1 Soil Vapour Well Installation and Sampling

Soil vapour wells SV15-18 to SV15-20 were installed in the same boreholes as groundwater monitoring wells MW15-18 to MW15-20, respectively. The soil vapour wells were constructed using a dedicated 15 cm stainless steel mesh Geoprobe® vapour screen and ¼-inch nylon tubing. The probe was placed into the borehole at depths of approximately 1.2 mbg. The probe was held in the centre of the open borehole while a filter sand pack was installed in the annular space surrounding the probe while the hollow stem augers were withdrawn. Bentonite was installed above and below the soil vapour probe, and was hydrated with water during

installation. A 0.3 to 0.6 m layer of bentonite chips was placed directly above and below the 30 cm sand pack and vapour probe to allow rapid hydration and a more effective seal within the soil vapour annular space.

SV15-18 was considered to be the worst case scenario based on the previous results; therefore, it was sampled on July 2, 2015. The soil vapour monitoring well was purged prior to sampling for approximately seven minutes. Following purging, a soil vapour sample was collected using laboratory calibrated pump and a thermal desorption. Isopropanol was used as a leak tracer to test the vapour well seal and sampling train. Soil Vapour field Purge and Sample forms are included in Appendix E.

4.4.2 Soil Vapour Results

4.4.2.1 Investigation Results - Modeling

To investigate AECs 1 (fill) and 2 (UST), analytical results for soil and groundwater from MW15-9 were modelled using calculations based in the Health Canada Detailed Quantitative Risk Assessment soil vapour modelling spreadsheet. The results from MW15-9 were considered the worst case scenario for investigating both APECs, since the highest concentrations of volatiles and semi-volatiles (including parameters listed in the CSAP Society gasoline list for fuels where available) were identified at this location.

Modeled results were then compared to the CSR IL/CL soil vapour standards. The depth of the soil sample at this location was 1.8 mbg and the depth to groundwater was approximately 1.5 mbg; therefore, the 1.5 m sample depth vapour attenuation factors (Table 2 of the MOE Technical Guidance 4) were applied to the calculated results. The modeled results are presented in comparison to the soil vapour CSR IL/CL standards below.

Table 4-2 Modeled Results from soil samples collected at 1.8 mbg at MW15-9

	Calculated Concentration (µg/m³)	Predicted indoor concentration (CL/IL)	Predicted outdoor concentration	CSR St	tandards	
Well ID	<u></u>	VAF = 0.00034	VAF = 0.0000012	CL	IL	
Benzene	816,710	278	1	3000	11500	
Toluene	263,858	90	0.32	4	10	
Ethylbenzene	16,710,924	5,682	20	15000	45000	
Xylenes	35,096,472	11,933	42	3000	9000	
VPHv	1,068,114,880,932,130	363,159,059,517	1,281,737,857	300	900	
MTBE	29,224	10	0.04	9000	27000	
Naphthalene	53,180	18	0.06	9	25	

Italic concentration exceeds IL standards VAF - Vapour attenuation Factor

BTEX – Benzene, Toluene, Ethylbenzene, Xylenes

Bold concentration exceeds CL standards

VPH - Volatile Petroleum Hydrocarbons

PAH – Polycyclic Aromatic Hydrocarbon

Modeled results are conservative. The non-attenuated calculated concentration of several constituents exceeded the applicable CSR IL/CL standards. Once the attenuation factors were applied the estimated indoor concentration of the constituents toluene, xylenes, VPHv and naphthalene exceeded the CSR IL/CL standards. The predicted indoor and outdoor air calculated concentrations for remaining constituents were less than the CSR IL/CL standards.

The concentrations were also modelled from groundwater and the results are presented in the following table:

Table 4-3 Modeled Results from groundwater samples collected at MW15-9

	Calculated Concentration (µg/m³)	Predicted indoor concentration (IL/CL)	Predicted outdoor concentration	CSR Si	tandards
Well ID		VAF = 0.00034	VAF = 0.0000012	CL	IL
VPHv	342000	116.3	0.00014	3000	11500
Benzene	272.4	0.093	0.0000001	4	10
Toluene	108.4	0.037	0.0000004	15000	45000
Ethylbenzene	805	0.27	0.0000003	3000	9000
Xylenes	569	0.19	0.0000002	300	900
Naphthalene	40	0.013	0.00000002	9	25
1,2 Dibromoethane	5	0.00186	0.00000000223	1	1
1,2 Dichloroethane	24	0.00819	0.00000000983	1	3.5
1,3-Butadiene	15050	5.11700	0.00000614040	6	20
MTBE	240	0.08160	0.00000009792	9000	27000

Italic concentration exceeds IL standards

VAF - Vapour attenuation Factor

BTEX – Benzene, Toluene, Ethylbenzene, Xylenes

Bold concentration exceeds CL standards

VPH - Volatile Petroleum Hydrocarbons

PAH – Polycyclic Aromatic Hydrocarbon

Modeled results are conservative. The non-attenuated calculated concentrations of several constituents when modelled from groundwater exceeded the CSR IL/CL standards. However, once the attenuation factors were applied, the predicted indoor and outdoor air calculated concentrations were less than the CSR IL/CL standards.

Based on the modeled results for the parameters available and the lack of results for additional parameters listed in the CSAP Society fuels list, vapours were conservatively considered contaminated. It was anticipated that vapours would be remediated by the removal of the soils on-Site, so a post-remediation confirmatory sample was collected at SV15-18 and results are included in section 4.2.2.2.

4.4.2.2 Vapour Results - Sampling

One soil vapour sample was collected at SV15-18. The following non-attenuated results were above the CSR IL/CL standards:

- VPHv = 240,000 μ g/m³ (CL = 3,000 μ g/m³; IL = 11,500 μ g/m³)
- benzene = $55 \mu g/m^3$ (CL = $4 \mu g/m^3$; IL = $10 \mu g/m^3$)
- n-hexane = $16,000 \mu g/m^3$ (CL = $2,000 \mu g/m^3$; IL = $6,500 \mu g/m^3$)
- methylcyclohexane = $26,000 \mu g/m^3$ (CL = $9,000 \mu g/m^3$; IL = $27,000 \mu g/m^3$)

Once the attenuation factors were applied, the predicted indoor and outdoor air calculated concentrations were less than the CSR IL/CL standards. Analytical results for soil vapour are included in Table 12 and presented on Figure 6. Laboratory certificates are included in Appendix F.

4.5 Quality Assurance and Quality Control

4.5.1 Field QA/QC

Keystone Environmental employed field measures to confirm quality assurance and quality control (QA/QC) when performing both sample collection for laboratory analyses and general fieldwork.

To minimize the potential for cross-contamination of samples, the following procedures were used by Keystone Environmental:

- New gloves were used for each sample collected
- Tools were cleaned with Alconox[™] soap and distilled water between samples
- Samples were placed in laboratory-supplied containers suitable for the analysis
- Samples were labelled and stored in a chilled cooler while in the field and during transport to the laboratory
- Samples and field duplicates were collected during each of the soil and groundwater sampling events for quality control purposes. The samples were labelled and stored in a chilled coolers with the original samples while in the field and during transport to the laboratory.

Samples were collected and submitted for analysis under chain of custody documentation to Maxxam, a Canadian Association for Laboratory Accreditation (CALA) certified laboratory. Soil, groundwater and vapour analysis was conducted in accordance with MOE procedures, and the MOE-recommended laboratory QA/QC protocols were followed.

The measure of the reproducibility or precision of the data is quantified by a parameter referred to as the Relative Percent Difference (RPD). The RPD is calculated by taking the absolute value of the difference between the sample and the duplicate and dividing it by the average of the

sample and duplicate, multiplied by 100, to obtain a percentage. Generally, RPD values greater than 35% in soil/soil vapour and 20% in water suggest further review. However, if the concentration of the analyte is less than five times the method detection limit, or if the analyte is a metal in soil, then an RPD greater than 35% may be reasonable. If the RPD is greater than 50%, then it is generally necessary to determine a cause and decide whether the effect of the elevated RPD value may alter the findings of the investigation (i.e., change the classification of a sample from "uncontaminated" to "contaminated" based on the applicable criteria).

Soil

The following duplicate pairs were collected:

Table 4-4 Soil QA/QC

Soil Sample and Field Duplicate	Analysis
CS15-11(1.5) and CS15-A	VPH and BTEX
CS15-18 (1.3) and CS15-B	Zinc
CS15-20 (0.6) and CS15-C	Copper, lead and zinc

BTEX – Benzene, Toluene, Ethylbenzene, Xylenes VPH – Volatile Petroleum Hydrocarbons

As RPD values were less than 35% and/or could not be calculated due to concentration being less than the RDL or less than five times the RDL, suggesting that the sample and duplicate results are in general agreement and are considered to be reliable and reproducible. Field QA/QC results for this phase are included in Tables 7 and 8.

Groundwater

One post-remedial QA/QC pair was collected (MW15-18 and MW15-AA) and submitted for analyses of LEPH, naphthalene, VPH and BTEX. The RPD values were less than 20% and/or could not be calculated due to concentration being less than the RDL or less than five times the RDL, suggesting that the sample and duplicate results are in general agreement and are considered to be reliable and reproducible. Field QA/QC results for this phase are included in Table 11.

4.5.2 Laboratory QA/QC Results

The laboratory QA/QC measures included method blanks, duplicate analyses, and spike and matrix spike recoveries were reviewed in addition to the Maxxam quality assurance and quality control calculations. The laboratory RPD values were within acceptable limits, or were less than five times the detection limits. The sample blank and spike analyses were also within the acceptable limits. Sample hold times of 7 to 180 days for soil and groundwater, depending on the parameter being analysed were not exceeded. Therefore, the samples and duplicates are in agreement, sample integrity has been maintained and the data is considered reliable. The laboratory completed QA/QC is provided in the Laboratory Analytical Reports included in Appendix F.

4.6 Summary

Keystone Environmental conducted a Phase I and II ESA on the properties listed as 370 and 456 Prior Street in May and August of 2014, respectively. The Phase I ESA identified five APECs and a Phase II ESA included the drilling of seven boreholes completed as groundwater monitoring wells and the sampling of seven groundwater monitoring wells to investigate the APECS. Hydrocarbon contamination, in both soil and groundwater, was identified on the south side of the suspect UST.

In February 2015, Keystone Environmental supervised the removal of an approximately 13,000 L UST, containing approximately 520 L of a mix of gasoline and water. Following the UST removal and soil remediation, additional drilling was conducted to investigate the groundwater and delineate the residual soil contamination. Nine boreholes, eight of which were installed as monitoring wells, were advanced to the north, northeast, southeast, south, southwest and northwest of the excavation extent during two separate drilling events. Soil analytical results exceeding the CSR IL/CL and AW_M standards were identified at MW15-9 and MW15-17 and groundwater concentrations exceeding the CSR AW_M standards were identified at MW15-8 and MW15-9.

The previous results were compared to the CSR IL/CL and AW_M standards and the table below summarizes the exceedances that were retained as Areas of Environmental Concern (AECs) for this confirmation of remediation:

Table 4-5 Analytical results above the CSR IL/CL and AW_M standards

APEC/AEC	Location (depth in mbg for the soil sample)	Soil (mg/kg)	Groundwater (ug/L)
	MW14-5 (0.6)	Copper = 285 (IL/CL = 90-250) Zinc = 409 (IL/CL = 150-600)	-
1. Fill	MW14-6 (0.8)	Zinc = 435 (IL/CL = 150-600)	-
	BH15-19 (0.6)	Copper = 2,160 (IL/CL = 90-250) Zinc = 1,210 (IL/CL = 150-600)	-
	MW14-4 (1.5)	VH = 210 (CL/IL = 200)	LEPHw = 3,300 > 500 AW _M naphthalene = 110 > 10 AW _M VPH = 3,300 > 200 AW _M
	MW15-8	-	LEPHw = 1,800 > 500 AW _M
2. UST	MW15-9 (1.8)	Ethylbenzene = 97 (CL/IL = 20) Xylenes = 330 (CL/IL = 50) VH = 2,200 (CL/IL = 200) VPH = 1,800 (CL/IL = 200)	LEPHw = 4,000 > 500 AW _M naphthalene = 190 > 10 AW _M VPH = 3,400 > 200 AW _M
	MW15-17 (1.5)	VH = 870 (CL/IL = 200) VPH = 860 (CL/IL = 200)	-

Italic concentration exceeds IL standards
BTEX – Benzene, Toluene, Ethylbenzene, Xylenes
LEPH – Light Extractable Petroleum Hydrocarbons
HEPH – Heavy Extractable Petroleum Hydrocarbons
* standards are pH dependent

Bold concentration exceeds CL standards VPH – Volatile Petroleum Hydrocarbons PAH – Polycyclic Aromatic Hydrocarbon No exceedances or sample not analyzed AEC – Area of Environmental Concern

Therefore, APECs 1 and 2 were retained as area of environmental concern (AEC) requiring remedial excavation. The confirmation of remediation program is summarized by media below.

4.6.1 Soil

Soil remediation was conducted at the Site from June 1 to 4, 2015, by Sumas (Photo 1 in Appendix C). Additional remediation was conducted by Badger using a vacuum truck on June 25, 2015 (Photos 3 and 4 in Appendix C). Keystone Environmental was on-Site to identify the areas and observe the remediation, to manifest the trucks and to collect confirmatory soil samples. Approximately 676.6 tonnes of soil was excavated, and transported for off-Site disposal at the Sumas facility in Burnaby, BC. Soil analytical results from the final remedial extent were less than the applicable standards and therefore it is considered that the Site was successfully remediated to meet the CSR IL/CL standards.

4.6.2 Groundwater

Prior to the remedial activities, BTEX, LEPH, naphthalene and VPH were identified as groundwater constituents of concern within and down-gradient of the former tank nest area. Following the remedial excavation, three monitoring wells were installed within the excavation limits. Groundwater samples were collected in two separate sampling events from two monitoring wells that represented the worst-case scenario for the Site (where the concentration of hydrocarbons was the highest prior to the remedial activities). Groundwater was remediated by the removal of the hydrocarbon source in the soils. Analytical results for the post-remediation groundwater samples collected for LEPH, VPH, BTEX, naphthalene and dissolved lead were less the CSR AW_M standards. Therefore, groundwater within the vicinity of the tank nest area the area identified by the notification of off-Site migration was successfully remediated to meet the CSR AW_M standards.

DW water applicability was also investigated by two slug tests conducted at the post-remedial groundwater monitoring well MW15-19 and hydraulic conductivity values ranged from 1.21 x 10^7 m/s to 1.86 x 10^{-7} m/s. These results show that the till unit at the Site would likely not provide a typical well yield suitable to meet the requirements for a drinking water source as outlined in MOE TG6.

4.6.3 Vapour

Soil vapour was not investigated prior to the remedial activities. Therefore, concentrations of the certain parameters listed on the CSAP Society list for gasoline sites were modelled from soil and groundwater results from the investigation phase to conservatively predict vapour concentrations in the indoor and outdoor breathing zones. Attenuated modelled concentrations of several volatile and semi-volatile hydrocarbons exceeded the CSR IL/CL standards. Soil vapour remediation occurred in conjunction with the removal of the soils. Therefore, following the remedial excavation, a soil vapour sample was collected to represent the worst case scenario (where the highest concentration of volatiles and semi-volatiles were detected on-Site) and attenuated results from SV15-18 were less than the CSR IL/CL standards. Therefore, vapour concentrations within the tank nest area were successfully remediated to meet the CSR IL/CL standards.

4.7 Remediation Conclusion

Based on the confirmatory soil, groundwater and vapour results, it is concluded that the soil contamination identified at MW14-6, MW14-5 and BH15-19 associated with AEC 1 and the soil, groundwater and vapour contamination associated with AEC 2 at the Site have been remediated to less than the CSR IL/CL and AW_M standards.

Since the southern portion of the Site is contiguous with the historical area wide False Creek fill confirmed in the area, further investigation or remediation maybe required for future characterization of soil disposal in the event of a redevelopment of the Site or prior to the submission for a Ministry Instrument.

5. CONCLUSIONS

It is concluded that constituents of concern associated with the on-site fill material (AEC 1) at MW14-5, MW14-6 and BH15-19 and the constituents of concern associated with the former on-Site UST (AEC 2) have been remediated in the Site soil, groundwater and/or soil vapour to concentrations less the BC CSR IL and CL standards for soil and soil vapour, and the CSR AW_M standards for groundwater.

We trust this is the information you require at this time. Please contact us should you have any questions.

Sincerely,

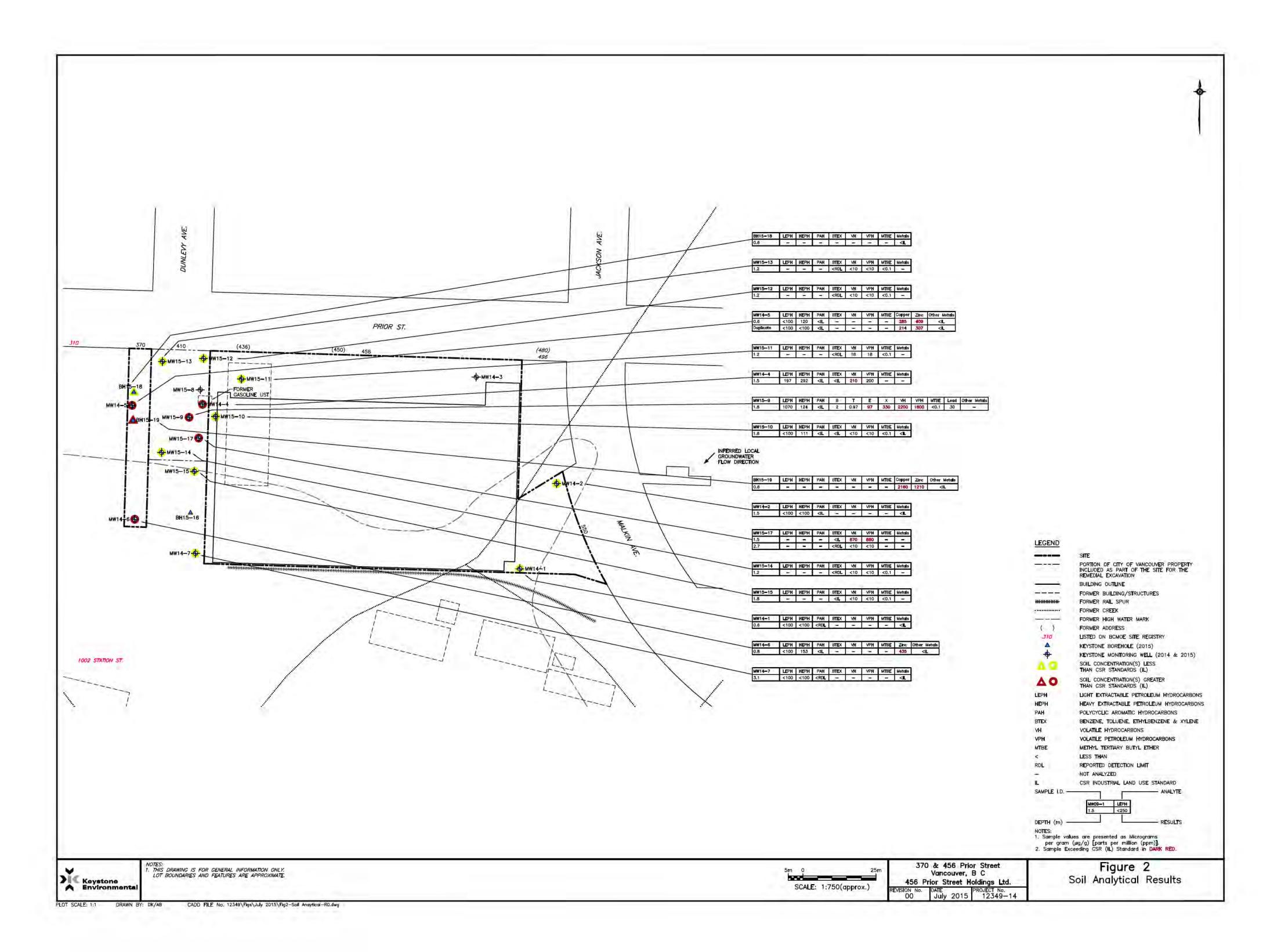
Keystone Environmental Ltd.

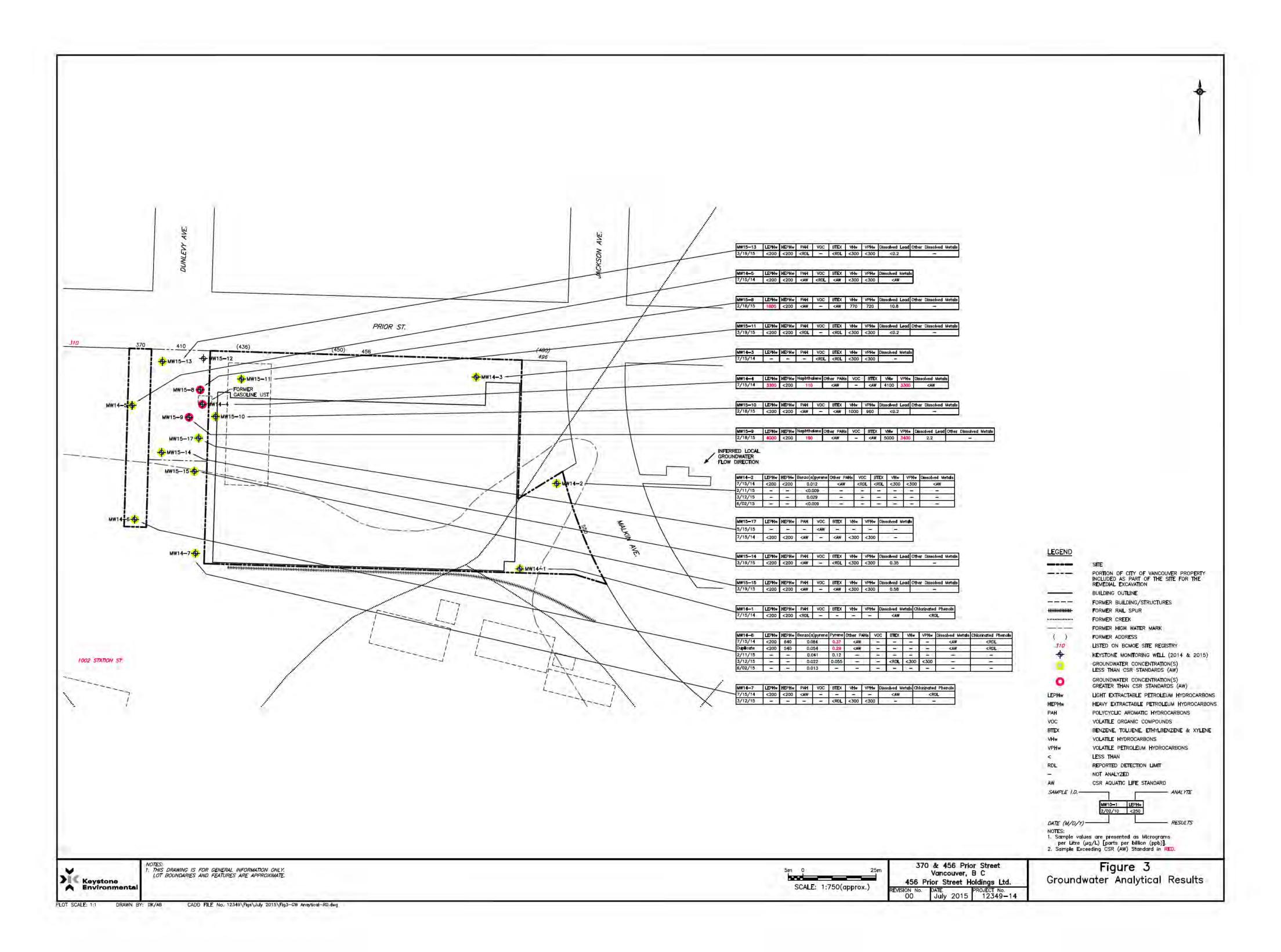
Francini Osses Martins, M.Sc., R.P.Bio Project Coordinator

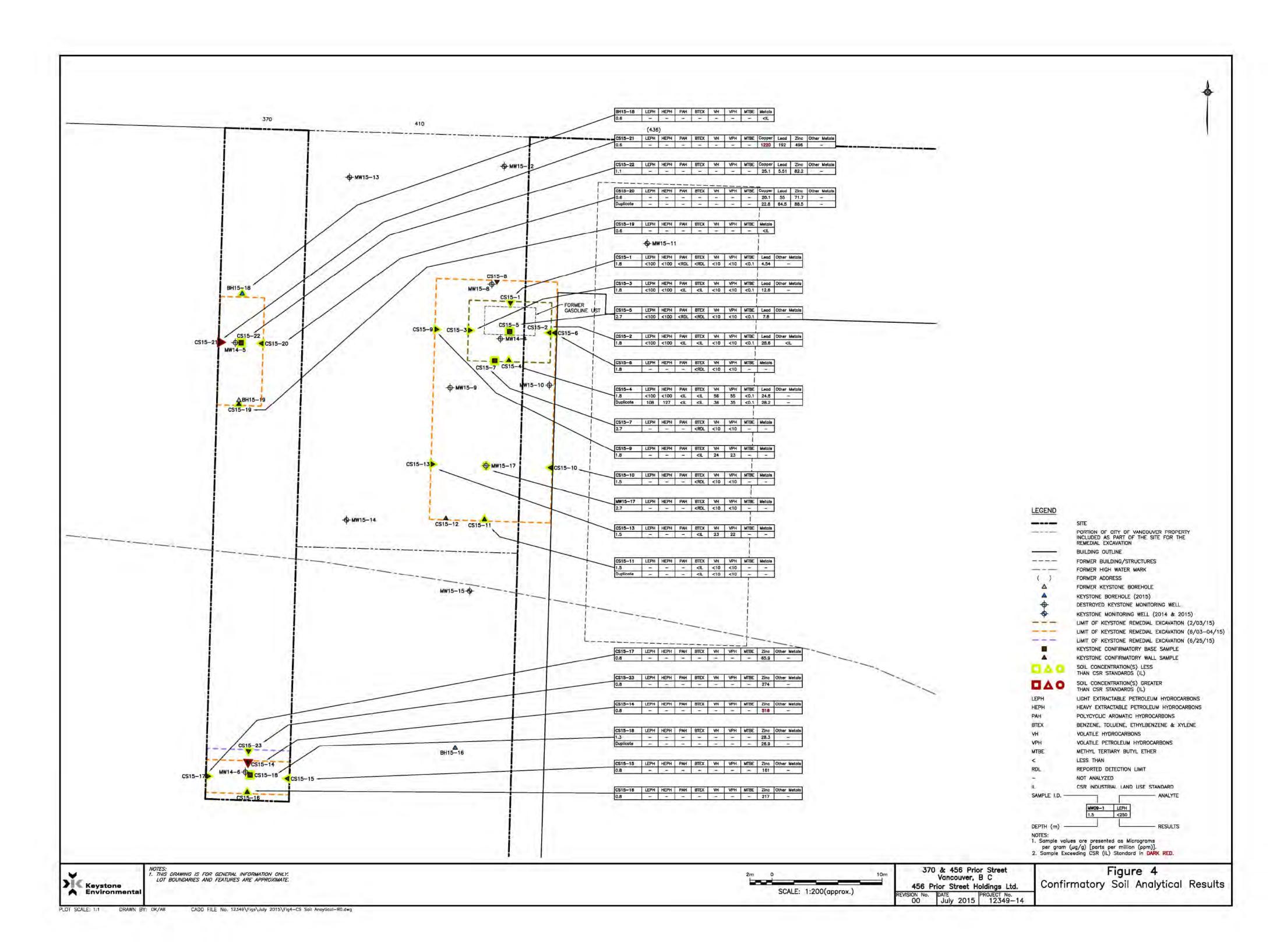
Keree Orso, M.Sc., R.P.Bio. Senior Project Manager

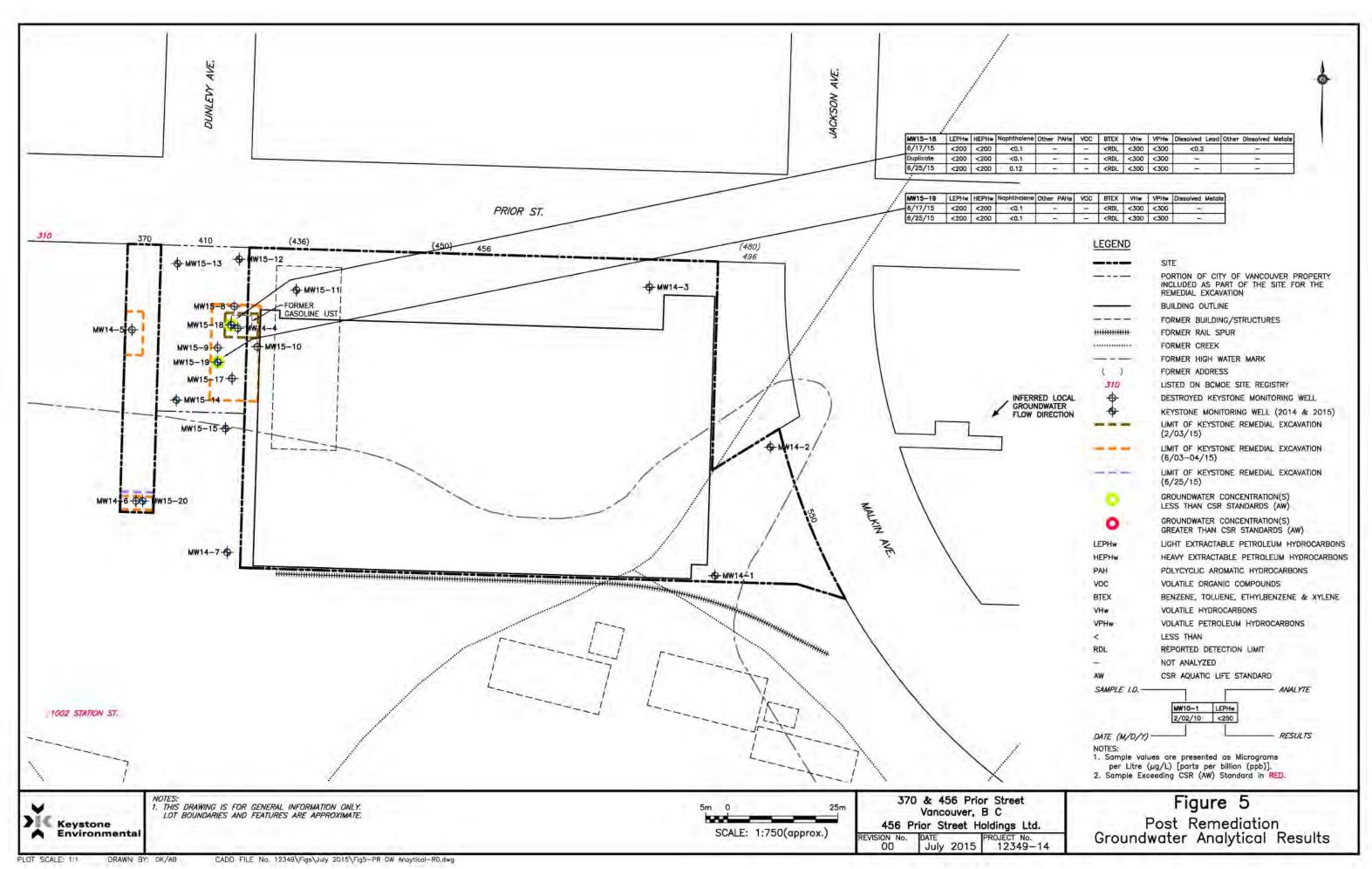
\key-filesvr\Common\12300-12399\12349\Report\12349 150722 COR Letter Report.docx

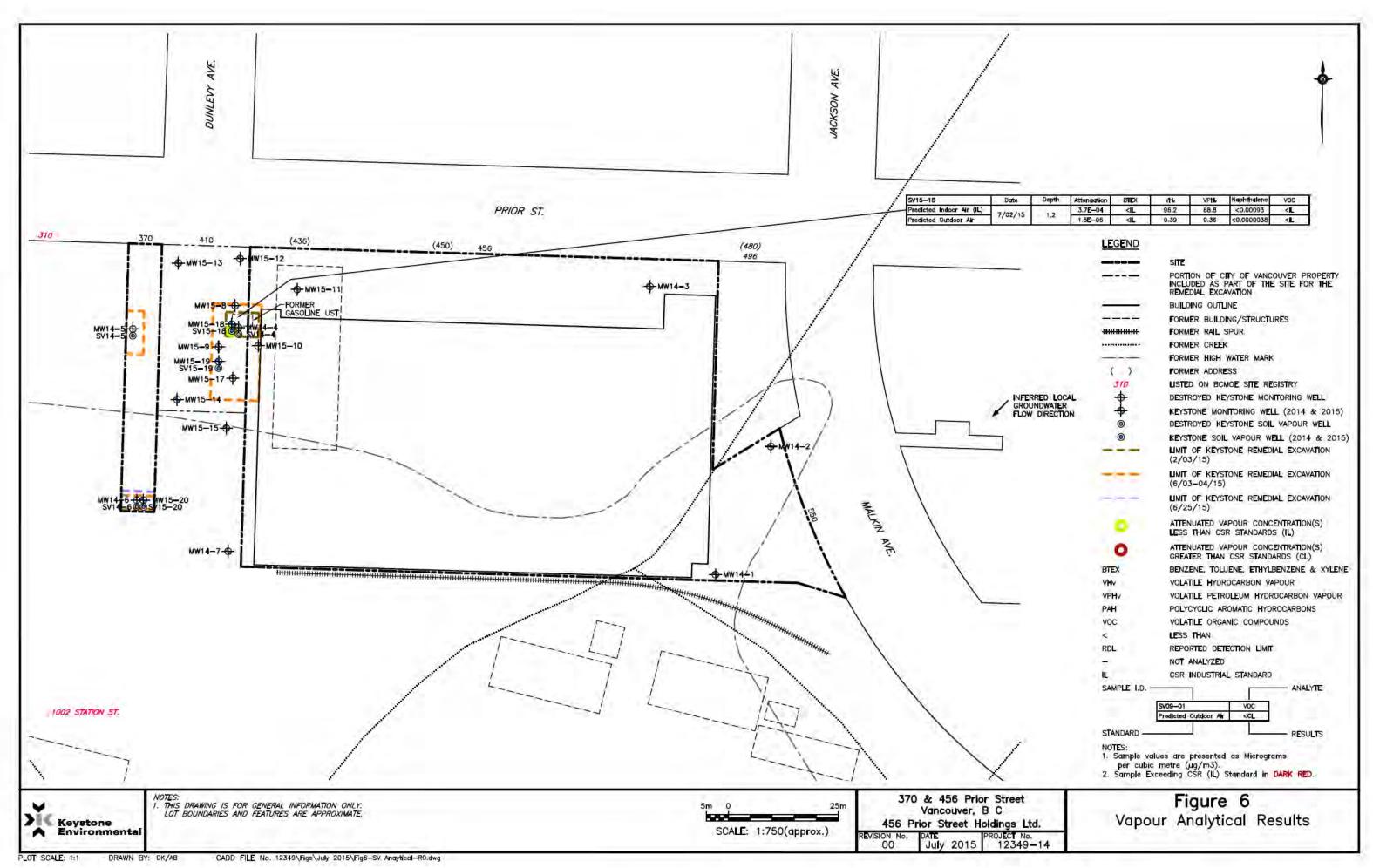
ATTACHMENTS:


- Figures
- Tables
- Appendix A Previous Documents and NIR
- Appendix B DW Applicability Supporting Documents
- Appendix C Photographic Documentation
- Appendix D Soil Disposal Summary
- Appendix E Well Development and Purge and Sample Forms
- Appendix F Maxxam Analytics Ltd. Certificates of Analysis
- Appendix G Keystone Environmental Ltd. General Terms and Conditions for Services




FIGURES





TABLES

TABLE 1: SOIL ANALYTICAL RESULTS HYDROCARBONS 456 Prior Street, Vancouver, BC

456 Prior Street Holdings Ltd. Project #: 12349

July 2015

CSR CL Standards	CSR IL Standards	SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID SAMPLE DEPTH (mbg) SOIL DESCRIPTION	Units	MW14-1(0.6) 10-Jul-14 B469514 KC1129 0.6	MW14-2(1.5) 10-Jul-14 B469514 KC1136 1.5	MW14-4 (1.5) 10-Jul-14 B459514 KC1149 1.5	MW14-5 (0.6) 11-Jul-14 B459514 KC1155 0.6	MW14-C 11-Jul-14 B459614 KC1161 Duplicate of MW14-5 (0.6)	RPD or MS for MW14-5 (0.6) and MW14-C	MW14-6 (0.8) 11-Jul-14 B459514 KC1162 0.8	MW14-7 (3.1) 11-Jul-14 B459514 KC1171 3.1
		Petroleum Hydrocarbons									
n/s	n/s	Waste Oil	h8/8	200	200	489	220	200	10%	253	2
200	200	VPHs	µg/g	-	4	200		44	44	Δ	Δ
200e	200e	VHs ₆₋₁₀	þg/g	-	-	210		-	+		
2000	2000	LEPHs	µg/g	<100	≺100	197	<100	<100	444	<100	<100
2000e	2000e	EPHs ₁₀₋₁₉	µg/g	<100	≤100	199	<100	<100	-	<100	<100
5000	5000	HEPHs	µg/g	<100	<100	292	120	<100	20<100	153	<100
5000e	5000e	EPHs ₁₉₋₂₂	ha/a	<100	<100	292	121	<100	21<100	154	<100
		Monocyclic Aromatic Hydrocarbon	5								
2.5a	2.5a	benzene	µg/g	-	-	0.95	-	-	+-		
20a	20a	ethylbenzene	µg/g			2.5	**	-	9+1		-
50	50	styrene	µg/g			<0.030		-	4+1		
25a	25a	toluene	рд/д	-	_	0.095	-	15		4	
50	50	xylenes	µg/g		-	3.8		-	4-0	4	
		Polycyclic Aromatic Hydrocarbons									
n/s	n/s	acenaphthene	µ9/g	<0.050	<0.050	< 0.050	<0.050	<0.050	-	0.82	<0.050
n/s	n/s	acenaphthylene	µg/g	<0.050	<0.050	<0.050	<0.050	< 0.050		<0.050	<0.050
n/s	n/s	anthracene	µ9/9	<0.050	< 0.050	0.051	0.053	<0.050	0.003<0.05	0.11	< 0.050
10	10	benzo[a]anthracene	µg/g	<0.050	0.11	0.086	0.16	0.099	0.061>0.05	0.1	< 0.050
10a	10a	benzo[a]pyrene	µg/g	<0.050	0.11	0.088	017	0.099	0.071>0.05	0.087	<0.050
10	10	benzo[b]fluoranthene	µg/g	<0.050	0.093	0.081	0.15	0.096	0.054>0.05	0.081	<0.050
10	10	benzo[b+j]fluoranthene	µg/g	<0.050	0.16	0.14	0.25	0.16	0.09>0.05	0.14	< 0.050
n/s	n/s	benzo[g,h,i]perylene	µg/g	<0.050	0.068	0.065	0.12	0.1	0.02<0.05	0.069	< 0.050
10	10	benzo[k]fluoranthene	µg/g	<0.050	0.054	<0.050	0.078	0.053	0.025<0.05	<0.050	<0.050
n/s	n/s	chrysene	ha/a	<0.050	0.13	0.11	0.2	0.14	0.06>0.05	0.14	< 0.050
10	10	dibenz[a_h]anthracene	µg/g	<0.050	< 0.050	<0.050	<0.050	< 0.050	-	< 0.050	< 0.050
n/s	n/s	fluoranthene	µg/g	<0.050	0.25	0.26	0.36	0.21	0.15>0.05	0.24	< 0.050
n/s	n/s	fluorene	µg/g	<0.050	<0.050	<0.050	<0.050	<0.050	2	0.74	<0.050
10	10	indeno[1,2,3-cd]pyrene	µg/g	<0.050	0.056	0.053	0.098	0.068	0.03<0.05	<0.050	<0.050
n/s	n/s	methylnaphthalene, 2-	µg/g	<0.050	0.18	2.3	0.37	0.26	35%	2	< 0.060
50	50	naphthalene	µg/g	<0.050	0.14	1.3	0.64	0.66	3%	1.3	< 0.050
n/s	n/s	PAH TEQ	µg/g	0.065	0.1744	0.1453	0.2659	0.1649	43%	0.1401	0.0
50	50	phenanthrene	µg/g	<0.050	0.13	0.19	0.18	0.082	0.098>0.05	0.54	<0.050
100	100	pyrene	hala	<0.050	0.25	0.25	0.36	0.22	0.14>0.05	0.23	< 0.050
n/s	n/s	Total HMW-PAHs	µg/g	<0.050	1.2	1.1	1.8	1.2	40%	1	<0.050
n/s	n/s	Total LMW-PAHs	µg/g	<0.050	0.44	3.9	1.3	1	26%	5.4	< 0.050
n/s	n/s	Total PAHs	µg/g	<0.050	1.6	4.9	3	2.2	31%	6.4	< 0.050

Soil Exceptances 125

Excents CSR CL standards Eccedi CSL ti standards

GARGE Expredences

RPO excess 35% MS was not RDL

L ANALYTICAL RESULTS ONS st, Vancouver, BC

t Holdings Ltd.

19

CSR IL Standards	SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID SAMPLE DEPTH (mbg) SOIL DESCRIPTION	Units	MW15-9 (1.8) 10-Feb-15 B511112 LR2135 1.8	MW15-10 (1.8) 10-Feb-15 B511112 LR2138 1.8	MW15-11 (1.2) 17-Mar-15 B621759 LW9624 1.2	MW16-12 (1.2) 17-Mar-15 B621769 LW9628 1.2	MW 15-13 (1.2) 17-Mar-15 B621759 LW9632 1.2	MW15-14 (1.2) 17-Mar-15 B521759 LW9637 1.2	MW/15-16 (1.8) 17-Mar-15 B621759 LW9642 1.8	MW15-17 (1.5) 14-May-15 B540152 MG1863 1.5	MW15-17 (2.7) 14-May-16 B540152 MG1865 2.7
	Petroleum Hydrocarbons										
n/s	Waste Oil	µg/g	1194	211						-	1
200	VPHs	µg/g	1800			<10	<10	<10	<10	860	
200e	VHs _{s-10}	µg/g	2200		18	<10	<10	<10	<10	870	<10
2000	LEPHs	µg/g	1070		-	8 -	8		-		+
2000e	EPHs ₁₀₋₁₉	µg/g	1090	<100	-		+		ii.		
5000	HEPHs	µg/g	124	111	2	8	4		20		-
5000e	EPHs ₁₈₋₃₂	µg/g	124	112	-	- 1	- 11		-		-
	Monocyclic Aromatic Hydrocarbon	5									
2.5a	benzene	µg/g	2	0.31	<0.0050	<0,0050	<0.0050	< 0.0050	0.054	0.41	< 0.0050
20a	ethylbenzene	µg/g	97	0.028	< 0.010	<0.010	<0.010	<0.010	0,075	5,9	< 0.010
50	styrene	µg/g	< 0.030	<0.030	<0.030	<0.030	<0.030	< 0.030	<0.030	< 0.030	<0.030
25a	toluene	µg/g	0.97	0.075	<0.020	<0.020	<0.020	<0.020	<0.020	0.96	<0.020
50	xylenes	µg/g	330	0.81	<0.040	<0.040	< 0.040	<0.040	0.26	2.9	< 0.040
	Polycyclic Aromatic Hydrocarbons										
n/s	acenaphthene	μg/g	0.073	<0.050	4	5			2		
n/s	acenaphthylene	рд/д	< 0.050	<0.050	_	_	-		_		
n/s	anthracene	µg/g	0.071	< 0.050	-	9					-0-
10	benzo[a]anthracene	µg/g	0.089	0.072	_	9			-		
10a	benzo[a]pytene	µg/g	D.082	0.063	ė	2 1	J I		-		
10	benzo[b]fluoranthene	μg/g	0.067	0.057	c	8 1		_		1	
10	benzo[b+j]fluoranthene	µg/g	0.12	0.099	2						
n/s	benzo[g,h,i]perylene	ha/a	0.059	<0.050	_		1		-		
10	benzo[k]fluoranthene	ид/д	<0.050	<0.050	_				-		
n/s	chrysene	µg/g	0.099	0.084							
10	dibenz[a,h]anthracene	jug/g	<0.050	< 0.050							
n/s	fluoranthene	µg/g	0.32	0.21		2					
n/s	fluorene	μg/g	1000	<0.050							
10	indeno[1,2,3-cd]pyrene	μg/g	<0.050	<0.050							
n/s	methylnaphthalene, 2-	µg/g	21	0.15							
50	naphthalene	ha/a	20	0.17		2			_	1	
n/s	PAH TEQ	руд рудц	0.1326	0.1109					2		
50	phenanthrene	µg/g	0.24	0.13							
100	pyrene	μg/g	0.29	0.2							
n/s	Total HMW-PAHs	μg/g	1.1	0.73		8 - 1					
n/s	Total LMW-PAHs	hala	42	0.45							Č-
n/s	Total PAHs	ha/a	43	1.2			-				

Excerns CSR CL sterolerin Exceeds CSR IL sterolerin

RPD screens 357 Mission and POL

TABLE 2: SOIL ANALYTICAL RESULTS VOCS

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd. Project #: 12349

July 2015

CSRIL	CSRIL
Standards	Standards
	100

SAMPLE ID	Units	MW15-9 (1.8)	MW15-10 (1.8)	MW15-11 (1.2)	MW15-12 (1.2)	MW 15-13 (1.2)	MW15-14 (1.2)	MW15-15 (1.8
DATE SAMPLED		10-Feb-15	10-Feb-15	17-Mar-15	17-Mar-15	17-Mar-15	17-Mar-15	17-Mar-15
LAB CERTIFICATE		B511112	B511112	B521759	B521759	B521759	B521759	B521759
LAB SAMPLE ID		LR2135	LR2138	LW9624	LW9628	LW9632	LW9637	LW9642
SAMPLE DEPTH (mbg)		1.8	1.8	1.2	1.2	1.2	1.2	1.8
SOIL DESCRIPTION								

< 0.10

< 0.10

<0.10

< 0.10

<0.10

700

Soil Exceedances

Exceeds CSR CL standards Exceeds CSR IL standards

methyl tert-butyl ether

µg/g <0.10

< 0.10

QA/QC Exceedances 45% 5>3

RPD exceeds 35% MS exceeds RDL

TABLE 3: SOIL ANALYTICAL RESULTS INORGANICS

CSRIL

500

10

40

100000

300

n/s

n/s

150-600ab

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd. Project #: 12349

July 2015

CSR CL

Standards	Standards
n/s	n/s
n/s	n/s
40	40
25a	15a
1500a	400a
8	8
2-100ab	1.5-150ab
700c	100acd
300	300
90-250ab	100-250abd
150-700ab	300-2000 abd
19000	19000
40a	150a
40	40

SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID SAMPLE DEPTH (mbg) SOIL DESCRIPTION	Units	MW14-1(0.6) 10-Jul-14 B459514 KC1129 0.6	MW14-2(1.5) 10-Jul-14 B459514 KC1136 1.5	MW14-5 (0.6) 11-Jul-14 B459514 KC1155 0.6	MW14-C 11-Jul-14 B459514 KC1161 Duplicate of MW14-5 (0.6)	RPD or MS for MW14-5 (0.6) and MW14-C	MW14-6 (0.8) 11-Jul-14 B459514 KC1162 0.8	MW14-7 (3.1) 11-Jul-14 B459514 KC1171 3.1	MW15-9 (1.8) 10-Feb-15 B611112 LR2135 1.8	MW15-10 (1.8) 10-Feb-15 B511112 LR2138 1.8	BH15-18 (0.6) 14-May-15 B540152 MG1867 0.6	BH15-19 (0.6) 14-May-15 B540152 MG1869 0,6
рН		7.15	7.67	6.41	6.79	-	6.37	6.73	6.37	6.39	7.16	6.56
Metals												
aluminum	µg/g	9780	17600	14200	12800	10%	20700	14600 -		10700	9070	11600
antimony	µg/g	0.16	0.72	6.22	5.9	5%	1.58	0.14		0.3	1.72	4.42
arsenic	µg/g	2.54	3.88	5.29	4,63	1.3%	4.98	1.55 -		2.71	2.04	2,16
banum	µg/g	41.1	140	150	152	1%	213	59 -		58.4	57.2	48.8
beryllium	µg/g	<0.40	<0.40	<0.40	< 0.40	- 1 0 /	<0.40	<0.40		< 0.40	< 0.40	<0.40
cadmium	ha/a	0.197	0.158	1.07	0.75	35%	0.509	0.182 -		0.109	0.189	0.765
chromium (total)	ha/a	14.2	15.8	17.3	13,3	26%	20.2	16.2 -		10.9	10.7	10.4
cobalt	µg/g	6.48	5.14	6.01	4.93	20%	6.3	6.95 -		3.35	4.51	4.89
copper	µg/g	12	28.2	285	214	28%	32.4	19 -		12.3	18.3	2160
lead	µg/g	2.69	98.9	319	520	48%	127	2.86	30	43.2	33	13.6
manganese	µg/g	335	252	234	213	9%	252	250 -		132	158	166
mercury	hala	<0.050	0.196	0.354	0.22	0.134>0.05	0.083	<0.050		0.096	<0,050	0.247
molybdenum	µg/g	0.82	0.62	0.5	0.45	0.05<0.1	0.53	0.21 -		0.44	0.3	1.36
nickel	на/а	19.6	11.8	21.2	22 4	6%	13.1	12 -		7.22	8.12	16.4
selenium	Hg/g	<0.50	<0.50	<0.50	<0.50	-	< 0.50	<0.50		<0.50	<0.50	< 0.50
siver	119/9	<0.050	0.083	0.167	0.11	0.057>0.05	3.01	0.06 -		0.127	0.054	0.46
strontium	µg/g	28.3	76.8	37.3	31.1	18%	29.6	45.7 -		37.9	19.5	17.4
tin	µg/g	0,8	9.51	23	14.2	47%	2.93	0.23 -		2.16	1,96	0.49
titanium	на/а	668	707	619	568	9%	790	906 -		460	425	550
vanadium	µg/g	41	43.7	43.7	39.2	11%	49.4	50.5 -		29.7	35.5	36.4
zinc	µg/g	37.7	66.8	409	307	28%	435	36.5 -		41.3	158	1210

150-600ab

Soil Exceedances

500

10

40

100000

300

n/s

n/s

125

125

Exceeds CSR CL standards Exceeds CSR IL standards

QA/QC Exceedances

45% 5×3 RPD exceeds 35% MS exceeds RDL

TABLE 4: GROUNDWATER ANALYTICAL RESULTS HYDROCARBONS

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd. Project #: 12349

Jul-15

CSR AW _{FW} Standards	CSR AW _M Standards	SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID TOP OF SCREEN (mbg) BOTTOM OF SCREEN (mbg)	Units	MW14-1 15-Jul-14 B459953 KC4032 0.0 0.0	MW14-2 15-Jul-14 B469953 KC4033 0.0	MW14-2 11-Feb-16 B611274 LR2904 0.0 0.0	MW14-2 12-Mar-16 B520500 LW2991 0.0 0.0	MW14-2 02-Jun-15 B546028 MJ2110 0.0 0.0	MW14-3 15-Jul-14 B459953 KC4034 0.0	MW14-4 15-Jul-14 B459953 KC4035 0.0	MW14-5 15-Jul-14 B459953 KC4036 0.0 0.0	MW 14-6 15-Jul-14 B459963 KC4037 0.0 0.0	MW14-A 15-Jul-14 B459953 KC4039 Duplicate of MW14-6	RPD or MS for MW14-6 and MW14-A
		Petroleum Hydrocarbons												
1500	1500	VPHw	µg/L		<300	= 1		f-	<300	3300	<300	-		
15000	15000	VHw ₈₋₁₀	µg/L	-	<300	-	4	4	<300	4100	<300	4	-	- 4
500	500	LEPHw	µg/L	<200	<200	-			-	3300	<200	<200	<200	+
5000	5000	EPHw ₁₀₋₁₉	µg/L	<200	<200	8	4	+	-	3400	<200	<200	<200	-
n/s	n/s	HEPHW	µg/L	<200	<200	=	+	-	-	<200	<200	840	540	100<200
n/s	n/s	EPHw ₁₉₋₃₂	µg/L	<200	<200	-		4	-	<200	<200	640	540	100<200
		Monocyclic Aromatic Hydrocarbons	5											
4000	1000	benzene	µg/L		<0.40		4	_	<0.40	100	<040	-	4	-
2000	2500	ethylbenzene	µg/L	-	<0.40	-		-	<0.40	640	0.56	-	-	-
720	720	styrene	µg/L	Ho	< 0.50	-	E .	-	< 0.50	< 0.40	<0.50	-	-	+
390	3300	toluene	µg/L	H	<0.40	= 1		-	<0.40	10	<0.40	= 10		1.00
n/s	n/s	xylenes	µg/L	e i	<0.40	-		-	<0.40	.37	63	8	-	+
		Polycyclic Aromatic Hydrocarbons												
60	60	acenaphthene	µg/L	<0.050	<0.050	- 1		-	-	0.26	0.057	1.1	1.3	17%
n/s	n/s	acenaphthylene	µg/L	<0.050	<0.050	-		-	-	<0.050	<0.050	<0.050	<0.050	-
0.5	0.5	acridine	µg/L	<0.050	<0.050	-		-	-	< 0.050	<0.050	<0.050	<0.050	
4	f .	anthracene	µg/L	<0.010	< 0.010	4	4	-	-	< 0.010	<0.010	0.16	0.14	13%
4	4	benzo[a]anthracene	µg/L	<0.010	0.011	-		-	-	<0.010	<0.010	0.11	0.073	40%
0.1	0.1	benzo[a]pyrene	µg/L	<0.0090	0.012	<0.0090	0.029	<0.0090	-	<0.0090	<0.0090	0.084	0.054	43%
n/s	n/s	benzo[b+j]fluoranthene	µg/L	<0.050	<0.050			-	-	<0.050	<0.050	<0.11	0.077	0.033<0.11
n/s	n/s	benzo[g,h,i]perylene	µg/L	<0.050	<0.050	-		+	-	< 0.050	< 0.050	< 0.050	< 0.050	
n/s	n/s	benzo[k]fluoranthene	µg/L	<0.050	< 0.050		1	2	-/_	< 0.050	< 0.050	< 0.050	< 0.050	u u
1	1	chrysene	µg/L	<0.050	<0.050	9	H		-	<0.050	<0.050	0.16	0.12	0.04<0.05
n/s	n/s	dibenz[a,h]anthracene	µg/L	<0.050	<0.050	4		-	-	< 0.050	< 0.050	< 0.050	< 0.050	-
2	2	fluoranthene	µg/L	< 0.020	0.027	-	2	e C	-	<0.020	< 0.020	0.36	0.3	18%
120	120	fluorene	µg/L	<0.050	<0.050	4			_	0.13	<0.050	0.62	0.62	0%
n/s	n/s	indeno[1,2,3-cd]pyrene	µg/L	<0.050	<0.050	-		_	-	<0.050	<0.050	<0.050	< 0.050	-+
n/s	n/s	methylnaphthalene, 2-	µg/L	<0.10	<0.10	-			-	92	0.42	1.6	1.6	0%
10	10	naphthalene	µg/L	<0.10	<0.10	- 1	4	-	+	110	1.3	2.7	28	4%
3	3	phenanthrene	µg/L	<0.050	<0.050	-		-	-	0.078	< 0.050	0.76	0.72	5%
0.2	0.2	pyrene	µg/L	<0.020	0.026	1	-	-	-	<0.020	<0.020	0.37	0.29	24%
34	34	quinoline	µg/L	<0.24	<0.24			t	-	<0.24	<0.24	<0.24	<0.24	-
n/s	n/s	Total HMW-PAHs	µg/L	<0.050	0.076	-	Į.	+	-	< 0.050	< 0.050	1.1	0.91	19%
n/s	n/s	Total LMW-PAHs	µg/L	<0.24	<0.24	- 1		+	-	200	1.8	6.9	7.1	3%
n/s	n/s	Total PAHs	µg/L	< 0.24	< 0.24	_		_	-	200	1.8	8	8	0%

Groundwater Exceedances

125 125 124 Econolis CSR DW sharsharts Econolis CSR AVEW standards Econolis CSR AVM standards

GAIGG Exceedances

pil

Million end 20% Million end (2)

TABLE 4: GROUNDWATER ANALYTICAL RESULTS **HYDROCARBONS**

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd. Project #: 12349

Jul-15

CSR AW _{FW} Standards	CSR AW _M Standards	SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID TOP OF SCREEN (mbg) BOTTOM OF SCREEN (mbg)	Units	MW14-6 11-Feb-16 B511274 LR2905 0.0 0.0	MW/14-6 12-Mar-16 B520496 LW2983 0.0 0.0	MW14-6 12-Mar-15 B520500 LW2992 0.0 0.0	MW14-6 02-Jun-16 B546028 MJ2111 0.0 0.0	MW14-7 15-Jul-14 B459953 KC4038 0.0	MW14-7 12-Mar-15 B520496 LW2984 0,0 0.0	MW15-8 18-Feb-15 B513254 LS3031 0,0		MW15-9 18-Feb-15 B513254 LS3032 0.0 0.0	MW15-1 18-Feb-1 B51325 L S3033 0.0	15 19-Mar-15 4 B522594	MW15-13 19-Mar-15 B522594 LX4165 1.2 2.1
		Petroleum Hydrocarbons		- 500	- 40	- 505				1		475			
1500	1500	VPHw	µg/L		<300		-	-	<300		720	3400		960 <300	<300
15000	15000	VHw ₈₋₁₀	µg/L		<300			+>	<300		770	5000		1000 <300	<300
500	500	LEPHw	µg/L -		5			<200	-	1	800	4000	<200	<200	<200
5000	5000	EPHw ₁₀₋₁₉	µg/L		-		-	<200	-		1800	4200	<200	<200	<200
n/s	n/s	HEPHW	µg/L	. 11	-		-	<200	11 -1	<200	<20	0	<200	<200	<200
n/s	n/s	EPHw ₁₉₋₉₂	µg/L			5 T T T		<200		<200	<20	0	<200	<200	<200
		Monocyclic Aromatic Hydrocarbor	15												
4000	1000	benzene	µg/L		< 0.40		5	L	< 0.40		3.8	230		32 <0.40	<0.40
2000	2500	ethylbenzene	µg/L		<0.40		-	1	<0.40		34	730		5.7 <0.40	<0.40
720	720	styrene	µg/L -		<0.40	5 1	4	-	<0.40	< 0.40	< 0.4	0	< 0.40	<0.40	<0.40
390	3300	toluene	µg/L —		<0.40			-	<0.40		1.5	20		2.9 <0.40	<0.40
n/s	n/s	xylenes	µg/L -	- 14	<0.40		10	+-	<0.40		7.8	580		30 < 0.40	<0.40
		Polycyclic Aromatic Hydrocarbon								-				2011-1100	
60	60	acenaphthene	µg/L -		-	2		< 0.050	1-1		0.31	0.28		0.22 < 0.050	< 0.050
n/s	n/s	acenaphthylene	µg/L -		4	= 1.		<0.050	-	<0.050	<0.0	150	< 0.050	<0.050	<0.050
0.5	0.5	acridine	µg/L -		_	5		<0.050	-	<0.050	<0.0	150	<0.050	<0.050	<0.050
4	t	anthracene	µg/L		-		_	0)	118 -	(0.025	0.021		0.084 < 0.010	< 0.010
1	4	benzo a anthracene	µg/L					0.0	31	<0.010	<0.0	110	< 0.010	<0.010	< 0.010
0.1	0.1	benzojajpyrene	µg/L	0.041	-	0.022	0.013	0.)	026 -	<0.0090	<0.0	090	<0.0090	<0.0090	<0.0090
n/s	n/s	benzo[b+j]fluoranthene	µg/L		-	- 1		<0.050		<0.050	<0.0	150	<0.050	<0.050	< 0.050
n/s	n/s	benzo[g,h,i]perylene	µg/L				-	< 0.050		< 0.050	<0.0	50	< 0.050	< 0.050	< 0.050
n/s	n/s	benzo[k]fluoranthene	µg/L		-			< 0.050	1 -/-	< 0.050	<0.0	50	< 0.050	<0.050	< 0.050
1	1	chrysene	µg/L					<0.050		<0.050	<0.0	150	<0.050	<0.050	< 0.050
n/s	n/s	dibenz[a,h]anthracene	µg/L -		_			< 0.050		< 0.050	<0.0	150	< 0.050	<0.050	< 0.050
2	2	fluoranthene	µg/L -					0.0	088 -	< 0.020		0.048		0.076 < 0.020	<0.020
120	120	fluorene	µg/L -			_		<0.050	-		0.16	0.16		0.25 < 0.050	<0.050
n/s	n/s	indeno[1,2,3-cd]pyrene	µg/L -		-	4	-	<0.050		<0.050	<0.0	150	<0.050	<0.050	<0.050
n/s	n/s	methylnaphthalene, 2-	µg/L -	- 1	4			<0.10	-		6.3	100		1.9 <0.10	<0.10
10	10	naphthalene	µg/L			_		<0.10	1	<3.1		190		2 <0.10	<0.10
3	3	phenanthrene	µg/L		-	2 1 1 1			12 -		0.077	0.12		0.33 < 0.050	< 0.050
0.2	0.2	pyrene	µg/L	0.12		0.055		0.1	087 —	<0.020		0.044		0.066 < 0.020	<0.020
34	34	quinoline	µg/L —		-		_	< 0.24		<0.41	<0.7	0	<0.24	<0.24	<0.24
n/s	n/s	Total HMW-PAHs	µg/L	- 13	4	E 1	-	-0	.23 -	< 0.050		0.091		0.14 < 0.050	< 0.050
n/s	n/s	Total LMW-PAHs	µg/L -		-		_	<0.24	-		6.9	290		4.8 <0.24	<0.24
n/s	n/s	Total PAHs	ijg/L						36 -		6.9	290		4.9 < 0.24	<0.24

Groundwater Exceedances

Exceeds CSR DW storoboths Extends CSS AWFW streamon Exceeds CSR AWM standards

PPC VALUE OF THE Million market

TABLE 4: GROUNDWATER ANALYTICAL RESULTS HYDROCARBONS

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd. Project #: 12349

Jul-15

500

5000

n/s

n/s

CSR AWFW	CSR AWM
Standards	Standards

1500	1500
1000	

500

5000

n/s

n/s

4000	1000
2000	2500
720	720
390	3300
n/s	n/s

60	60
n/s	n/s
0.5	0.5
4	f.
1	T
0.1	0.1
n/s	n/s
n/s	n/s
n/s	n/s
1	1
n/s	n/s
2	2
120	120
n/s	n/s
n/s	n/s
10	10
3	3
0.2	0.2
34	34
n/s	n/s
n/s	n/s
n/s	n/s

SAMPLE ID	Units	NW 15-14	MW15-15	MW 15-17
DATE SAMPLED		19-Mar-15	19-Mar-15	15-May-15
LAB CERTIFICATE		B522594	B522594	B540530
LAB SAMPLE ID		LX4166	LX4167	MG3596
TOP OF SCREEN (mbg)		1.2	1.2	0.0
BOTTOM OF SCREEN (mbg)		2.4	2.4	0.0

Petroleum	Hydrocarbo	ons
-----------	------------	-----

VPHw	µg/L	<300	<300	<300
VH _{Wg-10}	µg/L	<300	<300	<300
LEPHw	µg/L	<200	<200	<200
EPHw ₁₀₋₁₉	µg/L	<200	<200	<200
HEPHW	µg/L	<200	<200	<200
EPHw _{19:32}	µg/L	<200	<200	<200

	lic Aroma	

benzene	µg/L	< 0.40	5.8	1.2
ethylbenzene	µg/L	<0.40	1,3	2.5
styrene	µg/L	<0.40	< 0.40	< 0.50
toluene	µg/L	<0.40	0.99	<0.40
xylenes	µg/L	<0.40	71	2.1

Polycy	clic A	romatic	H	drocarbo	ns
--------	--------	---------	---	----------	----

acenaphthene	µg/L	0.055	0.093	< 0.050
acenaphthylene	µg/L	<0.050	<0.050	<0.050
acridine	µg/L	<0.050	<0.050	<0.050
anthracene	µg/L	0.01	0.01	< 0.010
benzo[a]anthracene	µg/L	<0.010	< 0.010	< 0.010
benzo[a]pyrene	µg/L	<0.0090	< 0.0090	<0.0090
benzo[b+j]fluoranthene	µg/L	<0.050	<0.050	< 0.050
benzo[g,h,i]perylene	µg/L	<0.050	< 0.050	< 0.050
benzo[k]fluoranthene	µg/L	<0.050	< 0.050	< 0.050
chrysene	hã/r	<0.050	<0.050	<0.050
dibenz[a,h]anthracene	µg/L	<0.050	< 0.050	< 0.050
fluoranthene	µg/L	0.038	0.036	0.027
fluorene	hay.	<0.050	< 0.050	< 0.050
indeno[1,2,3-cd]pyrene	μg/L	<0.050	<0.050	< 0.050
methylnaphthalene, 2-	µg/L	<0.10	0.25	2.2
naphthalene	µg/L	<0.10	< 0.48	-1.6
phenanthrene	µg/L	0.059	0.065	0.052
pyrene	µg/L	0.028	0.028	0.035
quinoline	µg/L	<0.24	<0.24	< 0.24
Total HMW-PAHs	µg/L	0.064	0.064	0.062
Total LMW-PAHs	µg/L	<0.24	<0.48	3.8
Total PAHs	µg/L	< 0.24	0,49	3.8

Groundwater Exceedances

Exceeds CSR DW standards Exceeds CSR AWFW startage Exceeds CSR AWM standards

GA/GC Exceptarges

99'D ex exist 20% Millorma-Dt

TABLE 5: GROUNDWATER ANALYTICAL RESULTS

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd.

Project #: 12349

Jul-15

CSR AW _{FW} Standards	CSR AW _M Standards	SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID TOP OF SCREEN (mbg) BOTTOM OF SCREEN (mbg)	Units	MW14-2 15-Jul-14 B459953 KC4033 0.0	MW14-3 15-Jul-14 B459953 KC4034 0.0	MW14-5 15-Jul-14 B459953 KC4036 0.0 0.0	MW15-17 15-May-15 B640530 MG3596 0.0
		Halogenated Aliphatics					de la Trans
n/s	n/s	bromodichloromethane	µg/L	<1.0	<1.0	<1.0	<1.0
n/s	n/s	bromoform	µg/L	<1.0	<1.0	<1.0	<1.0
n/s	n/s	bromomethane.	µg/L	<1.0	<1.0	<1.0	<1.0
130	130	carbon tetrachloride.	µg/L	<0.50	<0.50	<0.50	<0.50
n/s	n/s	chloroethane	µg/L	<1.0	<1.0	<1.0	<1.0
20	20	chloroform	µg/L	<1.0	<1.0	<1.0	1
n/s	n/s	chloromethane	µg/L	<1.0	<1.0	<1.0	≺1.0
n/s	n/s	dibromochloromethane	µg/L	<1.0	<1.0	<1.0	<1.0
n/s	n/s	dibromoethane, 1,2-	µg/L	<0.20	<0.20	<0.20	<0.20
n/s	n/s	dibromomethane	µg/L	<0.90	<0.90	<0.90	< 0.90
n/s	n/s	dichlorodifluoromethane	µg/L	<2.0	<2.0	<2.0	<2.0
n/s	n/s	dichloroethane, 1,1-	μg/L	<0.50	< 0.50	<0.50	<0.50
1000	1000	dichloroethane, 1,2-	µg/L	< 0.50	<0.50	<0.50	<0.50
n/s	n/s	dichloroethene, 1,1-	µg/L	<0.50	<0.50	<0.50	< 0.50
n/s	n/s	dichloroethene, 1,2- (cis)	µg/L	<1.0	<1.0	<10	<1.0
n/s	n/s	dichloroethene, 1,2- (trans)	µg/L	<1.0	<1.0	<10	<1.0
980	980	dichloromethane	rig/L	<2.0	<2.0	<2.0	<2.0
n/s	n/s	dichloropropane, 1,2-	µg/L	<0.50	<0.50	< 0.50	<0.50
n/s	n/s	dichloropropene, 1,3- (cis)	µg/L	<1.0	<1.0	<1.0	<1.0
n/s	n/s	dichloropropene, 1,3- (trans)	µg/L	<1.0	<1.0	<1.0	<1.0
n/s	n/s	tetrachloroethane, 1,1,1,2-	µg/L	<0.50	<0.50	< 0.50	< 0.50
n/s	n/s	tetrachloroethane, 1,1,2,2-	µg/L	<0.50	<0.50	< 0.50	<0.50
1100	1100	tetrachloroethene	µg/L	<0.50	<0.50	<0.50	<0.50
n/s	n/s	trichloro-1,2,2-trifluoro ethane, 1,1,2-	µg/L	<2.0	<2.0	<2.0	<2.0
n/s	n/s	trichloroethane, 1,1,1-	µg/L	< 0.50	<0.50	< 0.50	< 0.50
n/s	n/s	trichloroethane, 1,1,2-	µg/L	<0.50	<0.50	< 0.50	<0.50
200	200	trichloroethene	pg/L	<0.50	<0.50	<0.50	<0.50
n/s	n/s	trichlorofluoromethane	µg/L	<4.0	<4.0	<4.0	<4.0
n/s	n/s	vinyl chloride	µg/L	<0.60	<0.60	< 0.50	< 0.50
		Halogenated Aromatics					
n/s	n/s	bromobenzene	µg/L	<2.0	<2.0	<2.0	<2.0
7	420	dichlorobenzene, 1,2-	jug/L	<0.50	<0.50	<0.50	<0.50
1500	1500	dichlorobenzene, 1,3-	µg/L	<0.50	<0.50	<0.50	<0.50
280	260	dichlorobenzene, 1,4-	µg/L	<0.50	<0.50	<0.50	<0.50
13	120	monochlorobenzene	µg/L	<0.50	<0.50	<0.50	<0.50
		Non-Halogenated Aliphatics					
n/s	n/s	butadiene, 1,3-	µg/L	<5.0	<5.0	<5.0	<5.0
1/1	100	Bulancers, 2	sugt.	×10	=10	=50	p=10
9.5	1/3	manual persone a	165	etiji	×10	14(90)	(9)

EXCESS COR DRY SURVEYOR Excess CSR WINTW sundards Exceeds CDR AWM starshards

SPD extents 21% MS poceedoRCN

TABLE 6: GROUNDWATER ANALYTICAL RESULTS INORGANICS

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd.

Project #: 12349 Jul-15

CSR AW _{FVI}	CSR AW
Standards	Standards
n/s	n/s

n/s	n/s
n/s	n/s
200	200
50	125
10000	5000
53	1000
n/s	n/s
50000	50000
0.1-1.3a	-1
n/s	n/s
10	150
40	40
20-90a	20
n/s	n/s
40-160a	20
n/s	n/s
n/s	n/s
n/s	n/s
1	1
10000	10000
250-1500a	83
n/s	n/s
10	540
n/s	n/s
0.5-15a	15
n/s	n/s
n/s	n/s
n/s	n/s
3	3
n/s	n/s
1000	1000
3000	1000
n/s	n/s
75-3150a	100
n/s	n/s

SAMPLE ID	Units	MW14-1	MW14-2	MW14-4	MW 14-5	MW14-6	MW 14-A	RPD or MS
DATE SAMPLED		15-Jul-14	15-Jul-14	15-Jul-14	15-Jul-14	15-Jul-14	15-Jul-14	for
LAB CERTIFICATE	- 1 1	B459953	B459953	B459953	B459953	B459953	B459953	MW14-6
LAB SAMPLEID		KC4032	KC4033	KC4035	KC4036	KC4037	KC4039	and
TOP OF SCREEN (mbg)		0.0	0.0	0.0	0.0	0.0	Duplicate of	MW14-A
BOTTOM OF SCREEN (mbg)		0.0	0.0	0.0	0.0	0.0	MW14-6	
hardness	rng/L	57.2	330	117	233	260	262	
Dissolved Metals								
aluminum	non't	29.6	11.2	46.7	365	17.6	17.0	204

THAT GIVE SS	LOGIL	M2 - 6.	550	4 7.5	200		EUL	
Dissolved Metals								
aluminum	µg/L	29.6	11.3	46.7	365	17.5	17.2	2%
antimony	µg/L	0.74	0.59	<0.50	0.79	<0.50	< 0.50	+
arsenic	µg/L	0.3	1.19	1,65	0.76	3.78	3.72	2%
banum	µg/L	12.7	90.6	48.6	53	213	221	4%
beryllium	µg/L	<0.10	<0.10	<0.10	0.1.1	< 0.10	<0.10	-
bismuth	µg/L	<1.0	<1.0	<1.0	<10	<1.0	<1.0	
boron	µg/L	<50	593	77	400	93	88	5<50
cadmium	µg/L	0.016	.0.1	0.085	0.051	<0.010	<0.010	-
calcium	µg/L	19900	117000	35300	70000	89200	91000	2%
chromium (total)	µg/L	<1.0	<1.0	<10	<1.0	<10	<1.0	+
cobalt	µg/L	1.09	4.59	15.2	17.9	10.7	9.94	7%
copper	µg/L	1.6	0.62	0.4	2.97	0.24	0.23	0.01<0.3
iron	µg/L	5	2960	5230	1380	22800	23400	3%
lead	μg/L	<0.20	<0.20	10.5	<0.20	<0.20	<0.20	+
lithium	µg/L	<5.0	<5.0	<5.0	10.5	<5.0	<5.0	
magnesium	µg/L	1790	8980	6910	14300	8970	8520	5%
manganese	µg/L	155	1150	1930	2160	3530	3580	1%
mercury	μg/L	<0.010	<0.010	<0.010	0.013	<0,010	<0.010	-
molybdenum	µg/L	14.7	1.5	<1.0	<1.0	1.3	1.3	0<1
nickel	µg/L	1.2	5.6	16.4	32.2	7.4	7.4	0%
potassium	µg/L	2490	6540	3510	5050	6140	6050	1%
selenium	hã/r	0.11	0.17	0.17	0.21	<0.10	<0.10	-
silicon	µg/L	4270	7500	7770	10800	11100	11600	4%
siver	µg/L	< 0.020	< 0.020	< 0.020	<0.020	< 0.020	< 0.020	-
sodium	µg/L	4960	17400	12400	34200	12600	12200	3%
strontium	μg/L	77.5	983	193	318	611	591	3%
suiphur	µg/L	<3000	11000	28700	28800	27900	29600	6%
thallium	µg/L	<0.050	<0.050	0.103	0.146	< 0.050	< 0.050	-
tin	µg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-
titanium	µg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	+
uranium	µg/L	<0.10	0.6	<0.10	0,56	0.22	0.22	0<0.1
vanadium	µg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	Δ.
zinc	µg/L	<5.0	6.2	6.8	18	<50	<5.0	-
zirconium	µg/L	<0.50	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	+

Groundwater Exceedances

Exceeds CSR DW standards Exceeds CSR AWFW strategie Exceeds CSR AWM standards

GA/GC Exceedances

99'D ex exist 78% Millorma-Dt

TABLE 6: GROUNDWATER ANALYTICAL RESULTS INORGANICS

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd.

Project #: 12349 Jul-15

CSR AWFW	CSR AWM
Standards	Standards
n/s	ale.
	n/s

n/s	n/s		
n/s	n/s		
200	200		
50	125		
10000	5000		
53	1000		
n/s	n/s		
50000	50000		
0.1-1.3a	-1		
n/s	n/s		
10	150		
40	40		
20-90a	20		
n/s	n/s		
40-160a	20		
n/s	n/s		
n/s	n/s		
n/s	n/s		
1	1		
10000	10000		
250-1500a	83		
n/s	n/s		
10	540		
n/s	n/s		
0.5-15a	15		
n/s	n/s		
n/s	n/s		
n/s	n/s		
3	3		
n/s	n/s		
1000	1000		
3000	1000		
n/s	n/s		
75-3150a	100		
n/s	n/s		

SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLEID TOP OF SCREEN (mbg) BOTTOM OF SCREEN (mbg)	Units	MW14-7 15-Jul-14 B469953 KC4038 0.0	MW15-8 18-Feb-15 B613254 LS3031 0.0	MW15-9 18-Feb-15 B513254 LS3032 0.0	MW15-10 18-Feb-16 B613254 LS3033 0.0 0.0	MW15-11 19-Mar-16 B622594 LX4164 0.9 2.4	MW15-13 19-Mar-16 B522594 LX4165 1.2 2.1	MW15-14 19-Mar-15 B522594 LX4166 1,2 2,4	MW15-15 19-Mar-15 B522594 LX4167 1.2 2.4
hardness	mg/L	76.6	373	113	89	6.4	6.4	6.2	63
Dissolved Metals									
aluminum	µg/L	15.3	ω	- 12	Δ.	4	3.40	4,0	4
antimony	µg/L	<0.50		-	-		-	-	-
arsenic	µg/L	1	-	-	-	-		-	-
banum	µg/L	12.9		-	8	1		100	-
beryllium	µg/L	<0.10		-		(-e)	- 2-0	1,44	S=-
bismuth	µg/L	<1.0	- 0	-	- +-		- 4	-	
boron	µg/L	<50	-	-	-		4-1	-	_
cadmium	µg/L	0.176		-	-			-	-
calcium	µg/L	23600	-	÷	IH.	-	941	-	_
chromium (total)	µg/L	<1.0			- IRI		9+1	(±47)	-
cobalt	µg/L	9.29	-	-		-			-
copper	µg/L	1.77		-	-	-	441		-
iron	µg/L	215		-		-	7 44	1-1	-
lead	µg/L	<0.20	10.8	2.2	2 < 0.20	<0.20	<0.20	0.35	0.58
lithium	µg/L	<5.0		0-0		1 11	941		
magnesium	µg/L	4280		- 4	- 4	1	- 40	-0-	Ψ.
manganese	µg/L	943		-		-	-	1-1-1	-
mercury	µg/L	<0.010	-	-	-	1	4-1		-
molybdenum	µg/L	<1.0	-	3.5	-		-	1 = 15c - 1	-
nickel	µg/L	14.1	-				- H	4-42-4	- 14
potassium	µg/L	1490				-		- u	
selenium	µg/L	<0.10		_	-				
silicon	µg/L	7310	-		-		-	1	
siver	ug/L	<0.020	-	-	-	-	+		-
sodium	µg/L	5830		-	-		_		
strontium	µg/L	174	-	-	ω.		-		-
suiphur	µg/L	16500		+		12	-	1	-
thallium	µg/L	<0.050	-	-	-			-	-
tin	µg/L	<5.0		-	-	-		- -	-
titanium	µg/L	<5.0	E		-	- H	-	L >+()	
uranium	µg/L	<0.10		-	-		9-1	10000	
vanadium	µg/L	<5.0	-	Δ		1 - 4	44	104-111	-
zinc	µg/L	11		-	-			1	-
zirconium	µg/L	<0.50	-	-	344			F. S.L. S.	

Groundwater Exceedances

Exceeds CSR DW storotocts Extends CSR AWFW constants Exceeds CSR AWM standards

PPC VALUE OF THE Million market

TABLE 7: SOIL ANALYTICAL RESULTS HYDROCARBONS/VOCs 456 Prior Street

456 Prior Street Holdings Ltd. Project #: 12349

July 2015

CSR CL Standards	CSR IL Standards			
n/s	n/s			
200	200			
200e	200e			
2000	2000			
2000e	2000e			
5000	5000			
5000e	5000e			
2.5a	2.5a			
20a	20a			
50	50			
25a	25a			
50	50			
700	700			
n/s	n/s			
n/s	n/s			
n/s	n/s			
10	10			
10a	10a			
10	10			
10	10			
n/s	n/s			
10	10			
n/s	n/s			
10	10			
n/s	n/s			
n/s	n/s			
10	10			
n/s	n/s			
50	50			
n/s	n/s			
50	50			
100	100			
n/s	n/s			
n/s	n/s			

SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID SAMPLE DEPTH (mbg) SOIL DESCRIPTION	Units	CS15-1 (1.8) 03-Feb-16 B508872 LQ0462 1.8	CS15-2 (1.8) 03-Feb-16 B608872 LQ0463 1.8	CS15-3 (1.8) 03-Feb-15 B508872 LQ0464 1.8	CS15-4 (1.8) 03-Feb-16 B608872 LQ0465 1.8	CS15-A 03-Feb-16 B608872 LQ0467 Duplicate of CS15-4 (1.8)	RPD or MS for CS15-4 (1.8) and CS15-A	CS15-5 (2.7) 03-Feb-16 B508872 LQ0466 2.7	CS15-6(1.8) 01-Jun-15 B545416 MI9361 1.8	CS15-7(2.7) 01-Jun-15 B545416 MI9362 2.7	C S15-9 (1.8) 02-Jun-16 B546024 MJ2099 1.8
Petroleum Hydrocarbons											· -
Waste Oil	h8/8	200	200	200	200	235	16%	20	0		2
VPHs	µg/g	<10	<10	s10	55	35	20>10	<10	<10	<10	
VHs ₅₋₁₀	µg/g	<10	<10	< 1 0	56	36	20>10	<10	<10	<10	
LEPHs	µg/g	<100	<100	<100	<100	108	8<100	<100		-	-
EPHs ₁₀₋₁₉	µg/g	<100	<100	s100	<100	109	9<100	<100		-	-
HEPHs	µg/g	<100	<100	<100	<100	127	27<100	<100		-	-
EPHs ₁₉₋₃₂	µg/g	<100	<100	<100	<100	128	28<100	<100			4
nocyclic Aromatic Hydrocarbons									-		•
benzene	µg/g	<0.0050	0.08	0.014	0.12	0.1	18%	<0.0050	<0.0050	< 0.0050	.0.
ethylbenzene	µg/g	<0.010	0.22	0.011	0.29	0.2	37%	<0.010	< 0.010	<0.010	0.
styrene	на/а	<0.030	<0.030	< 0.030	<0.030	<0.030	-	<0.030	< 0.030	<0.030	< 0.030
toluene	µg/g	<0.020	<0.020	<0.020	0.046	0.035	0.011<0.02	<0.020	<0.020	<0.020	<0.020
xylenes	hala	<0.040	0.57	0.11	1.3	0.78	50%	<0.040	<0.040	< 0.040	0.
Non-Halogenated Aliphatics	Pas	7.0.10	0.01	9.71	1.4	9.19	5000	0.010	1.0.010	0,0 10	1
methyl tert-butyl ether	µg/g	≤n 10	<0.10	<0.10	<0.10	<0.10		<0.10		L.	L
lycyclic Aromatic Hydrocarbons	P99	0.10	-0.10	0.10	10.10	-50- (iii		70.10			100
acenaphthene	µg/g	< 0.050	<0.050	<0.050	<0.050	0.05	0<0.05	< 0.050	0	The same of the sa	
acenaphthylene	hala hala	<0.050	<0.050	<0.050	<0.050	<0.050		<0.050			
anthracene	pg/g	<0.050	<0.050	<0.050	< 0.050	<0.050	-	<0.050	-	-	
benzo[a]anthracene		<0.050	<0.050	<0.050	0.057	0.088	0.031<0.05	<0.050			
	µg/g	<0.050	<0.050	<0.050	0.057	0.09	0.019<0.05	<0.050	-	*	7
benzo[a]pyrene	µg/g						77777	17.17.77	-	-	
benzo[b]fluoranthene	µg/g	<0.050	<0.050	<0.050	0.06		900000000000001<	<0.050	7	-	7
benzo[b+j]fluoranthene	hđ/đ	<0.050	<0.050	<0.050	0.096	0.12	0.024<0.05	<0.050		-	-
benzo[g,h,i]perylene	ha/a	<0.050	<0.050	< 0.050	0.056	0.068	0.012<0.05	<0.050		-	b.
benzo[k]fluoranthene	hala	<0.050	<0.050	<0.050	<0.050	<0.050		<0.050		100	-
chrysene	µg/g	<0.050	<0.050	<0.050	0.07	0.1	0.03<0.05	<0.050	-		2
dibenz[a,h]anthracene	µg/g	<0.050	<0.050	<0.050	<0.050	<0.050		<0.050		-	2
fluoranthene	µg/g	<0.050	<0.050	0.051	0.075	0.2	0.125>0.05	<0.050		-	-
fluorene	ha/a	<0.050	<0.050	< 0.060	<0.050	0.064	0.004<0.05	<0.060		-	-
indeno[1,2,3-cd]pyrene	µg/g	<0.050	<0.050	<0.050	<0.050	771077	89999999999999	<0.050		A.	-
methylnaphthalene, 2-	µg/g	<0.050	0.052	0.27	0.25	1.7	149%	<0.050	+	7	-
naphthalene	µg/g	<0.050	0.11	0.29	0.14	0.88	0.74>0.05	<0.050		-	1
PAH TEQ	µg/g	0.065	0.065	0.065	0.1177	0.1475	22%	0.08	5	4	4
phenanthrene	µg/g	<0.050	<0.050	<0.050	<0.050	0.16	0.11>0.05	<0.050		-	-
pyrene	µg/g	<0.050	<0.050	0.054	0.079	0.21	0.131>0.05	<0.050	-	-	-
Total HMW-PAHs	µg/g	<0.050	<0.050	0.1	0.5	0.93	60%	< 0.050	÷	100	-
Total LMW-PAHs	µg/g	<0.050	0.16	0.55	0.39	2.9	153%	<0.050		4	
Talai PAH	1199	×0 950	0.16	0.86	0.30	2.8	124%	-0.0F2			1

Soil Engendersons 126 175

Exceeds (359 C), standards Exceeds CSR (Letendards

QA/QC Exceedances

RPE/ stimeds 25% MS-axiones ADL

TABLE 7: SOIL ANALYTICAL RESULTS HYDROCARBONS/VOCs 456 Prior Street

456 Prior Street Holdings Ltd.

Project #: 12349

July 2015

CSR CL Standards	CSR IL Standards	SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID SAMPLE DEPTH (mbg) SOIL DESCRIPTION	Units	CS15-10 (1.5) 02-Jun-16 B546024 MJ2100 1.5	CS15-11 (1.5) 02-Jun-16 B646024 MJ2101 1.5	CS15-13 (1.5) 02-Jun-16 B646024 MJ2103 1.5
		Petroleum Hydrocarbons				
n/s	n/s	Waste Oil	na/a		-	41
200	200	VPHs	µg/g	<10	<10	22
200e	200e	VHs ₅₋₁₀	µg/g	<10	<10	23
2000	2000	LEPHs	i)g/g		_	-
2000e	2000e	EPHs ₁₀₋₁₉	µg/g		-	-
5000	5000	HEPHs	µg/g			_
5000e	5000e	EPHs ₁₉₋₃₂	на/а	-	-	2
	2.000	Monocyclic Aromatic Hydrocarbon				
2.5a	2.5a	benzene	-	< 0.0050	<0.0050	0.17
20a	20a	ethylbenzene	hala	<0.010	0.019	0.36
50	50	styrene	µg/g	<0.030	<0.030	<0.030
25a	25a	toluene	ру/д	<0.020	<0.020	0.08
50	50	xylenes	h8,8	< 0.040	< 0.040	0.75
		Non-Halogenated Aliphatics	1,00		1	
700	700	methyl tert-butyl ether	µg/g		-	-
		Polycyclic Aromatic Hydrocarbon			•	
n/s	n/s	acenaphthene	1/9/9	-	-	4
n/s	n/s	acenaphthylene	µg/g	_	-	4
n/s	n/s	anthracene	pg'g	-	-	_
10	10	benzo[a]anthracene	на/а		-	
10a	10a	benzo[a]pyrene	µg/g		-	=
10	10	benzo[b]fluoranthene	µg/g			-/-
10	10	benzo[b+j]fluoranthene	рд/д	-		S
n/s	n/s	benzo[g,h,i]perylene	ha/a	-	-	4
10	10	benzo(k)fluoranthene	µg/g	_	_	-
n/s	n/s	chrysene	µg/g	_	-	_
10	10	dibenz[a,h]anthracene	µg/g	-	-	-
n/s	n/s	fluoranthene	µg/g	-	-	-
n/s	n/s	fluorene	hala		-	-
10	10	indeno[1,2,3-cd]pyrene	µg/g		+	-
n/s	n/s	methylnaphthalene, 2-	µ9/g	-	-	8
50	50	naphthalene	µg/g	-	-	-
n/s	n/s	PAH TEQ	µg/g	-	+	
50	50	phenanthrene	µg/g	-	1-	-
100	100	pyrene	P6/6	-	-	-
n/s	n/s	Total HMW-PAHs	µg/g		-	=
n/s	n/s	Total LMW-PAHs	µg/g			+
9'8	701	Telal PAH	1100	-	1-	0

Soil Engendersons 126 175

Exceeds (359 C), standards Exceeds CSR (Letendards

QA/QC Exceedances

RPE/ stimeds 25% MS-axiones ADL

TABLE 8: SOIL ANALYTICAL RESULTS HYDROCARBONS/VOCs

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd. Project #: 12349 July 2015

CSR CL Standards	CSR IL Standards			
200	200			
200e	200e			
2000	2000			
2000e	2000e			
5000	5000			
5000e	5000e			
2.5a	2,5a			
2.5a 20a	2.5a 20a			
50 50	50 50			
25a	25a			
50	50			
700	700			
n/s	n/s			
n/s	n/s			
n/s	n/s			
10	-10			
10a	10a			
10	10			
10	10			
n/s	n/s			
10	10			
n/s	n/s			
10	10			
n/s	n/s			
n/s	n/s			
10	10			
n/s	n/s			
.50	60			
50	50			
100	100			
n/s	n/s			
n/s	n/s			

SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID SAMPLE DEPTH (mbg) SOIL DESCRIPTION	Units	CS15-1 (1.8) 03-Feb-15 B508872 LQ0462 1.8	CS15-2 (1.8) 03-Feb-15 B508872 LQ0463 1.8	CS15-3 (1.8) 03-Feb-15 B508872 LQ0464 1.8	CS15-4 (1.8) 03-Feb-15 B508872 LQ0465 1.8	CS15-A 03-Feb-15 B508872 LQ0467 Duplicate of CS15-4 (1.8)	RPD or MS for CS15-4 (1.8) and CS16-A	C\$15-5 (2.7) 03-Feb-15 B508872 LQ0466 2.7	CS15-6(1.8) 01-Jun-15 B545416 MI9361 1.8	C\$15-7(2.7) 01-Jun-15 B545416 MI9362 2.7	CS15-9 (1.8) 02-Jun-15 B546024 MJ2099 1.8
Petroleum Hydrocarbons										*	-
VPHs	µg/g	<10	<10	<10	66	36	20>10	<10	<10	<10	
VHs ₀₋₁₀	µg/g	<10	<10	<10	56	36	20>10	<10	<10	<10	
LEPHs	µg/g	<100	<100	<100	<100	108	8<100	<100	-	-	-
EPHs ₁₀₋₁₈	µg/g	<100	<100	<100	<100	109	9<100	<100	-	1	-
HEPHs	hid/d	<100	<100	<100	<100	127	27<100	<100		-	+
EPHs ₁₉₋₂₂	µg/g	<100	<100	<100	<100	128	28<100	<100	-	-	1
onocyclic Aromatic Hydrocarbor	5										*
benzene	µg/g	<0,0050	0.06	0.014	0.12	0.1	18%	<0.0050	<0.0050	< 0.0050	0.
ethylbenzene	µg/g	<0.010	0.22	0.011	0.29	0.2	37%	<0.010	<0.010	<0.010	0.9
styrene	µg/g	<0.030	< 0.030	< 0.030	<0.030	< 0.030	-	< 0.030	<0.030	< 0.030	< 0.030
toluene	jug/g	< 0.020	< 0.020	< 0.020	0.046	0.035	0.011<0.02	<0.020	<0.020	< 0.020	< 0.020
xylenes	µg/g	< 0.040	0.57	0.11	1.3	0.78	50%	<0.040	< 0.040	< 0.040	0.
Non-Halogenated Aliphatics			•						•	•	
methyl tert-butyl ether	µg/g	<0.10	<0.10	<0.10	<0.10	<0.10	200	<0.10	-	-	-
olycyclic Aromatic Hydrocarbon	5		7 /								
acenaphthene	µg/g	< 0.050	< 0.050	< 0.050	<0.050	0.05	0<0.05	< 0.050	-	-	-
acenaphthylene	µg/g	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	-	< 0.050	-		-
anthracene	µg/g	<0.050	< 0.050	< 0.050	<0.050	< 0.050	-	< 0.050		-	-
benzo[a]anthracene	ha/a	< 0.050	< 0.050	< 0.050	0.057	0.088	0.031<0.05	<0.050	-	1	-
benzo[a]pyrene	µg/g	<0.050	<0.050	< 0.050	0.071	0.09	0.019<0.05	< 0.050	-	-	-
benzo[b]fluoranthene	µg/g	<0.050	<0.050	<0.050	0.06	0.069	0.009<0.05	<0.050	+	-	+-
benzo[b+j]fluoranthene	µg/g	< 0.050	<0.050	<0.050	0.096	0.12	0.024<0.05	<0.050	**	4	-
benzo[g,h,i]perylene	µg/g	<0.050	<0.050	< 0.050	0.056	0.058	0.012<0.05	< 0.050	-	-	
benzo[k]fluoranthene	µg/g	<0.050	<0.050	<0.050	<0.050	< 0.050	e e	<0.050	-	-	
chrysene	µg/g	<0.050	<0.050	≃0.050	0.07	0.1	0.03<0.05	<0.050	++	-	
dibenz[a,h]anthracene	µg/g	<0.050	< 0.050	< 0.050	< 0.050	< 0.050	- 3- "	< 0.050	-	-	4-
fluoranthene	µg/g	<0.050	< 0.050	0.051	0.075	0.2	0.126>0.05	<0.050	-	-	-
fluorene	µg/g	<0.050	<0.050	< 0.050	<0.050	0.054	0.004<0.05	<0.050	\$		£
indeno[1,2,3-cd]pyrene	µg/g	<0.050	<0.050	<0.050	<0.050	0.059	0.009<0.05	<0.050	-	-	
methylnaphthalene, 2-	µg/g	<0.050	0.052	0.27	0.25	1.7	149%	< 0.050			-
naphthalene	pa/a	<0.050	0.11	0.29	0.14	0.88	0.74>0.05	<0.050	÷	-	-
phenanthrene	µg/g	<0.050	< 0.050	< 0.050	< 0.050	0.16	0 11>0 05	<0.050	+	F	-
pyrene	µg/g	<0.050	<0.050	0.054	0.079	0.21	0.131>0.05	<0.050	-	-	
Total HMW-PAHs	µg/g	< 0.050	<0.050	0.1	0.5	0.93	80%	<0.050	-	-	+-
Total LMW-PAHs	µg/g	<0.050	0.18	0.55	0.39	2.9	153%	<0.050	4	4	-
Tutal DAMe	4555	-E 008	0.90	8.00	5.00	11	104%	-2 830			

Soil Exceedances 125 125

1000

Exceeds CSR (3, day \$49) Seconds CSR (1, checker)

GAIGC Exceedances

12%

AFB an east 274 out except str.

TABLE 8: SOIL ANALYTICAL RESULTS HYDROCARBONS/VOCs

456 Prior Street, Vancouver, BC 456 Prior Street Holdings Ltd. Project #: 12349 July 2015

CSR CL Standards	CSR IL Standards	SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID SAMPLE DEPTH (mbg) SOIL DESCRIPTION	Units	CS15-10 (1.5) 02-Jun-15 B546024 MJ2100 1.5	CS15-11 (1.5) 02-Jun-15 B546024 MJ2101 1.5	C\$15-A 02-Jun-15 B546024 K003661 Duplicate of C\$15-11 (1.5)	RPD or MS for CS15-4 (1.8) and CS15-A	CS15-13 (1.5) 02-Jun-15 B546024 MJ2103 1.5
		Petroleum Hydrocarbons						
200	200	VPHs	µg/g	<10	<10	<10	-	22
200e	200e	VHs ₆₋₁₀	µg/g	<10	<10	<10	-	23
2000	2000	LEPHs	µg/g	-	-	=	-	124
2000e	2000e	EPHs ₁₀₋₁₈	ha/a	-	-	-		
5000	5000	HEPHs	h/g/g	+	-	п	-	-
5000e	5000e	EPHS ₁₉₋₂₂	µg/g	-	4	÷	-	-
		Monocyclic Aromatic Hydrocarbo	ns	`				
2.5a	2,5a	benzene	Ha/a	<0.0050	<0.0050	<0.0050	<u>~</u>	0.1
20a	20a	ethylbenzene	µg/g	<0.010	0.019	0.017	0.002<0.005	0.36
50	50	styrene	µg/g	<0.030	< 0.030	< 0.030	-	< 0.030
25a	25a	toluene	jug/g	< 0.020	< 0.020	<0.020	_	0.06
50	50	xylenes	µg/g	< 0.040	< 0.040	< 0.040	_	0.7
		Non-Halogenated Aliphatics						
700	700	methyl tert-butyl ether	µg/g	-	-	-	-	
		Polycyclic Aromatic Hydrocarbon	15					
n/s	n/s	acenaphthene	µg/g	-	2	4	-	14
n/s	n/s	acenaphthylene	µg/g	-	-	_		
n/s	n/s	anthracene	µg/g	-		-	-	
10	-10	benzo[a]anthracene	µg/g	_	2	4	-	44
10a	10a	benzo[a]pyrene	µg/g	-	-	_		
10	10	benzo[b]fluoranthene	µд/д	-	-	-	0.009<0.05	-
10	10	benzo[b+j]fluoranthene	µд/д	4-	-	-	-	
n/s	n/s	benzo[g,h,i]perylene	µg/g	_	2	_		2
10	10.	benzo[k]fluoranthene	µg/g	-	-	-	-	
n/s	n/s	chrysene	µg/g	-	-	2	-	
10	10	dibenz[a,h]anthracene	µg/g	+	_	_	-	
n/s	n/s	fluoranthene	µg/g	-	-	1		
n/s	n/s	fluorene	µg/g	-	-	-		Q-
10	10	indeno[1,2,3-cd]pyrene	ha/a	-	-	2	-	
n/s	n/s	methylnaphthalene, 2-	µg/g	-		-	_	
50	60	naphthalene	pg/g	-	+	+	-	
50	50	phenanthrene	µg/g	4	-	-		
	17.70	-	100		1	-		+

µg/g

µд/д

µg/g

Sail Exceedances 125 125

100

n/s

n/s

10/0

100

n/s

n/s

CER

Exceeds CSR (3, Garden's) Seconds CSR (1, checkerts

pyrene

Total HMW-PAHs

Total LMW-PAHs

Tatal PAHe.

GAIGC Exceedances

42%

AFE amount EA.

TABLE 9: SOIL ANALYTICAL RESULTS HYDROCARBONS 456 Prior Street

456 Prior Street Holdings Ltd.

Project #: 12349

Jul-15

CSR CL	CSRIL
Standards	Standards

n/s	n/s
2000	2000
2000e	2000e
Enon.	5000

n/s	n/s	
n/s	n/s	
n/s	n/s	
10	10	
10a	10a	
10	10	
10	10	
n/s	n/s	
10	10	
n/s	n/s	
10	10	
n/s	n/s	
n/s	n/s	
10	10	
n/s	n/s	
50	50	
n/s	n/s	
50	50	
100	100	
n/s	n/s	
n/s	n/s	
n/s	n/s	

SAMPLEID	Units	BF15-1
DATE SAMPLED		01-Jun-15
LAB CERTIFICATE		B545543
LAB SAMPLE ID		MI9880
SAMPLE DEPTH (mbg)		0.00
SOIL DESCRIPTION		

	Petro	leum	Hyd	rocar	bons
_		1000	20.0	~ .	

Waste Oil	h8/8	.200
LEPHs	µg/g	<100
EPHs ₁₀₋₁₈	þg/g	<100
HEPHs	Pg/g	<100
EPHs ₁₉₋₉₂	µg/g	<100

Polyc	yelic Arc	matic Hy	drocarbor
-------	-----------	----------	-----------

Polycyclic Aromatic Hydrocarbon	IS	
acenaphthene	ид/д	<0.050
acenaphthylene	ha/a	<0.050
anthracene	µg/g	<0.050
benzo[a]anthracene	µg/g	<0.050
benzo[a]pyrene	µg/g	<0.050
benzo[b]fluoranthene	µ9/g	<0.050
benzo(b+j)fluoranthene	h8/8	<0.050
benzo[g,h,i]perylene	µg/g	<0.050
benzo[k]fluoranthene	µg/g	<0.050
chrysene	µg/g	<0.050
dibenz[a,h]anthracene	µ9/9	< 0.050
fluoranthene	µg/g	<0.050
fluorene	µg/g	<0.050
indeno[1,2,3-cd]pyrene	на/а	<0.050
methylnaphthalene, 2-	µg/g	<0.050
naphthalene	µg/g	<0.050
PAH TEQ	рд/д	0.065
phenanthrene	hð/ð	<0.050
pyrene	hala	< 0.050
Total HMW-PAHs	hð/ð	<0.050
Total LMW-PAHs	µg/g	<0.050
Total PAHs	µg/g	<0.050

Soil Exceedances

Exceeds CSR CL standards Exceeds CSR IL standards

QA/QC Exceedances 45% 5>3

RPD exceeds 35% MS exceeds RDL

TABLE 10: SOIL ANALYTICAL RESULTS INORGANICS 456 Prior Street

456 Prior Street Holdings Ltd.

Project #: 12349

Jul-15

CSR CL	CSR IL	
Standards	Standards	
n/s	n/s	

Units	BF15-1
	01-Jun-16
	B545543
	MI9880
	-
	7.25
	Units

n/s	n/s
40	40
25a	25a
1500a	1500a
8	8
2-100ab	2-200ab
700c	700c
300	300
90-250ab	90-250ab
150-700ab	150-2000at
19000	19000
40a	150a
40	40
500	500
10	10
40	40
100000	100000
300	300
n/s	n/s
n/s	n/s
150-600ab	150-600ab

pH		7.25
Metals		
aluminum	µg/g	7680
antimony	µg/g	0.2
arsenic	µg/g	2.24
barium	µg/g	43.2
beryllium	µg/g	<0.40
cadmium	ha/a	0.219
chromium (total)	ha/a	27.4
cobalt	µg/g	6.88
соррег	µg/g	14.8
lead	µg/g	2.32
manganese	µ9/9	335
mercury	ha/a	<0.050
molybdenum	µg/g	0.34
nickel	на/а	33.2
ælenium	µg/g	<0.50
siver	h0,0	0.075
strontium	µg/g	22.3
tin	µg/g	0.18
titanium	ha/a	715
vanadium	µg/g	40.3
zinc	µg/g	37.4

Soil Exceedances

125

125

Exceeds CSR CL standards Exceeds CSR IL standards

QA/QC Exceedances

RPD exceeds 35% MS exceeds RDL

TABLE 11: GROUNDWATER ANALYTICAL RESULTS HYDROCARBONS AND INORGANICS 456 Prior Street

456 Prior Street Holdings Ltd.

Project #: 12349 July 2015

CSR AW _M Standards	SAMPLE ID DATE SAMPLED LAB CERTIFICATE LAB SAMPLE ID TOP OF SCREEN (m bg) BOTTOM OF SCREEN (mbg)	Units	MW15-18 17-Jun-15 B551116 ML9876 0.0 0.0	MW15-AA 17-Jun-16 B561116 ML9879 Duplicate of MW15-18	RPD or MS for MW15-18 and MW15-AA	MW15-18 25-Jun-16 B653988 MN5272 0.0	MW15-19 17-Jun-16 B651116 ML9877 0.0	MW15-19 25-Jun-16 B653988 MN5273 0.0 0.0
	Petroleum Hydrocarbons							-
1500	VPHw	µg/L	<300	<300	-	<300	<300	<300
15000	VHw _{e-t0}	µg/L	<300	<300		<300	<300	<300
500	LEPHw	µg/L	<200	≈200	-	<200	<200	<200
5000	EPHw ₁₀₋₁₈	µg/L	<200	<200	-	<200	<200	<200
n/s	HEPHW	µg/L	<200	<200	-	<200	<200	<200
n/s	EPHw ₁₉₋₃₂	μg/L	<200	<200		<200	<200	<200
	Monocyclic Aromatic Hydrocarbo	ons						
1000	benzene	µg/L	< 0.40	< 0.40	-	<0.40	< 0.40	< 0.40
2500	ethylbenzene	µg/L	<0.40	<0.40		< 0.40	<0.40	<0.40
720	styrene	µg/L	< 0.40	<0.40	-	< 0.40	< 0.40	< 0.40
3300	toluene	μg/L	< 0.40	<0.40	-	<0.40	<0.40	<0.40
n/s	xylenes	µg/L	<0.40	<0.40	-	<0.40	<0.40	<0.40
	Polycyclic Aromatic Hydrocarbo	ns					Total Inc.	
10	naphthalene	µg/L	<0.10	<0.10	-	0.1	2 < 0.10	<0.10
	Inorganics							
n/s	hardness	mg/L	278	3-5-7-11	-	-	-	-
	Dissolved Metals							
20	lead	µg/L	< 0.20		-	-	9	-

Groundwater Exceedances

125 Exceeds CSR AWM standards

QA/QC Exceedances

RPD exceeds 20%

MS exceeds RDL

TABLE 12: VAPOUR ANALYTICAL RESULTS CSAP FUELS LIST

456 Prior Street

456 Prior Street Holdings Ltd.

Project #: 12349

July 2015

CSR CL	CSR IL	SAMPLE ID	Units	SV15-18		
Standards	Standards	DATE SAMPLED		02-Jul-15		
		LAB CERTIFICATE			B555896	
		LAB SAMPLE ID			MO8254	
		SAMPLE DEPTH (mbg)			1.2	
		FLOW RATE (L/min)			0.1	
		FLOW DURATION (min)			40	
		VAPOUR CONCENTRATION		MSVC	PIVC (CL/IL)	POVC
		ATTENUATION FACTOR			3.7E-04	1.5E-06
		Petroleum Hydrocarbons				
3000	11500	VPHv	μg/m³	240000	88.8	0.36
n/s	n/s	VHv ₆₋₁₃	µg/m³	260000	96.2	0.39
	<u> </u>	Monocyclic Aromatic Hydrocarbons				
4	10	benzene	μg/m³	55	0.02	0.000083
3000	9000	ethylbenzene	μg/m³	37	0.014	0.000056
3000	9000	styrene	μg/m³	6.6	0.0024	0.0000099
15000	45000	toluene	μg/m³	76	0.028	0.00011
300	900	xylenes	μg/m³	48	0.018	0.000072
		Non-Halogenated Aliphatics				
6	20	butadiene, 1,3-	μg/m³	<1.3	<0.00048	<0.000002
8000	25000	decane, n-	µg/m³		<0.00093	<0.000038
2000	6500	hexane, n-	μg/m³	16000	5.92	0.024
9000	27000	methyl tert-butyl ether	µg/m³	<25	<0.0093	<0.000038
9000	27000	methylcyclohexane	μg/m³	26000	9.62	0.039
		Non-Halogenated Aromatics				
1000	4000	isopropylbenzene	µg/m³	<0.5	<0.000185	<0.0000075
20	55	trimethylbenzene, 1,2,4-	μg/m³	5.2	0.0019	0.0000078
20	55	trimethylbenzene, 1,3,5-	µg/m³	5.3	0.002	0.00000
		Polycyclic Aromatic Hydrocarbons				
9	25	naphthalene	μg/m³	<2.5	<0.00093	<0.000038
		Halogenated Aliphatics				
1	1	dibromoethane, 1,2-	μg/m³	<0.5	<0.000185	<0.00000075
1	3.5	dichloroethane, 1,2-	μg/m³	<0.25	<0.0000925	<0.00000375

Vapour Exceedances

125 125 Exceeds CSR CL standards
Exceeds CSR IL standards

QA/QC Exceedances 45%

45% 5>3 RPD exceeds 35% MS exceeds RDL

APPENDIX A PREVIOUS DOCUMENTS AND NIR

May 23, 2014

Mr. Victor Brent Louie Le Kiu Holdings Ltd. 456 Prior Street Vancouver, BC V6A 2E5

Dear Mr. Louie:

Re: Report of Findings – Phase I Environmental Site Assessment

370 and 456 Prior Street, Vancouver, BC

Project No. 12108 (1.0)

We have enclosed the report titled Report of Findings – Phase I Environmental Site Assessment, 370 and 456 Prior Street, Vancouver, BC. We are pleased to submit this report to Le Kiu Holdings Ltd.

If you have any questions, please contact me.

Sincerely,

Keystone Environmental Ltd.

Nicole MacDonald, P.Ag. Project Manager

\key-filesvr\Common\12100-12199\12108\Phase 00001 - PSI\Report\12108 140523 Phase I ESA.docx

Encl.

REPORT OF FINDINGS PHASE I ENVIRONMENTAL SITE ASSESSMENT

370 and 456 Prior Street Vancouver, BC

Prepared for:

LE KIU HOLDINGS LTD. 370 and 456 Prior Street Vancouver, BC V6A 2E5

Prepared by:

KEYSTONE ENVIRONMENTAL LTD.

Suite 320 – 4400 Dominion Street

Burnaby, BC

V5G 4G3

Telephone: 604-430-0671 Facsimile: 604-430-0672 www.keystoneenviro.com

Project No. 12108

May 2014

EXECUTIVE SUMMARY

This KEYSTONE ENVIRONMENTAL[™] Phase I Environmental Site Assessment (ESA) report, prepared at the request of Le Kiu Holdings Ltd. was conducted for the two properties referenced as 370 and 456 Prior Street, in the City of Vancouver, BC (the Site)¹. The total area of the Site is approximately 8,570 m². The Site is currently occupied by a multi-tenant warehouse and office building.

One property (410 Prior Street) is located between the two portions of the Site (370 and 456 Prior Street). The property at 410 Prior Street is owned by the City of Vancouver and is currently occupied by a paved parking area associated with the Site.

On-Site Summary

In 1910, a former shingle manufacturer was located on the Site. From the early 1920s, or earlier, to the mid-1940s, a former building was located on the west portion of the Site at 436 Prior Street. Historical records indicated that the former building was occupied by a contractor's warehouse (Grant Smith & Co.) and a former logging supply operation (F&F Equipment).

In the late 1940s, the former building was removed and the west and central portions of the existing warehouse were constructed. The east portion of the existing warehouse was added in the late 1950s/early 1960s. A former rail spur was located on the south perimeter of the Site, adjacent to the south of the existing warehouse, from the late 1940s to the mid-1970s. The rail spur was removed in the late 1970s, and the Site has remained relatively unchanged since the 1970s. Occupants of the existing warehouse included Slade & Stewart, a grocery distributor, from the 1950s to the mid-1980s. Since the mid-1980s, various grocery, importing, wholesale, and office operations have occupied the Site.

The following on-Site areas of potential environmental concern (APECs) were identified:

APEC 1 – Fill Material (south portion of the Site)

Fire insurance maps from 1930 indicate that the historical high water mark of False Creek (prior to infilling the False Creek flats) was located on the south portion of the Site; and a Vancouver Old Streams map indicates that a former stream was located on the south portion of the Site, as shown on Figure 1. Based on the unknown origin and quality of the material used to fill the south portion of the Site, there is considered to be a potential for constituents of concern associated with the fill material to be present in Site soil, groundwater, and/or vapour at concentrations greater than the Contaminated Sites Regulation (CSR) standards.

i

Project 12108 / May 2013

¹ 550 Malkin Street and 454 Prior Street are alternate addresses associated with the Site. According to historical records, 436 and 450 Prior Street were former addresses associated with the Site.

APEC 2 - Heating Oil and USTs

It is unknown how, or if, the former structure on the Site were heated. If they were heated, wood, coal, electricity, or heating oil may have been used. If heating oil was used, it would have been stored in above ground storage tanks (ASTs) and/or underground storage tanks (USTs). The former building located on the Site was located within the footprint of the existing Site building; therefore, if heating oil USTs were present; it is likely that they would have been removed during the redevelopment of the Site in the 1940s.

Currently, the Site building is connected to natural gas. It is unknown how the building was heated prior to natural gas connection. A former boiler was observed in the southwest portion of the building; however it is unknown how it was fuelled. During the Site reconnaissance, two cutoff metal pipes indicative potential vent pipes were observed top the northwest of the existing Site building. In addition, one circular metal cover (flush with the ground) was observed to the northwest of the Site building (in the vicinity of the cut-off pipes). The circular metal cover was located in a concrete pad approximately 5 m x 3 m in area, indicative of potential UST beneath the concrete patch. Therefore, there is a potential for a potential UST to be located on the northwest portion of the Site.

Off-Site Summary

The off-Site properties located to the north of the Site have been occupied by single family residences since the 1930s, or earlier. The properties located to the east and west of the Site have been primarily occupied by industrial operations and the since the 1930s, or earlier. The property located to the south of the Site was occupied by a rail yard from the 1930s to the late 1980s, and has remained primarily vacant since the early 1990s.

A shown in Table 3, eleven off-Site properties were identified as having been occupied by historical operations of potential environmental concern. Of the eleven, the three off-Site properties listed below were identified as Areas of Potential Concern (APECs) to the Site:

- APEC 3 Off-Site former smelting and metal operations at 310 Prior Street from the 1930s to the 1960s (adjacent to the west of the Site)
- APEC 4 Off-Site former ink manufacturing operation at 496 Prior Street from the 1930s to the 1960s (adjacent to the east of the Site)
- APEC 5 Off-Site former rail yard at 1002 Station Street from the 1920s to the 1980s (adjacent to the south-southwest of the Site)

Conclusion

There is a potential for constituents of concern associated with historical on and off-Site activities to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the applicable standards provided in the British Columbia Contaminated Sites Regulation (CSR).

TABLE OF CONTENTS

			Page
EXE	CUTI	VE SUMMARY	i
LIST	OF A	PPENDED FIGURES	iv
LIST	OF A	PPENDED TABLES	iv
LIST	OF A	PPENDICES	iv
LIST	OF A	ACRONYMS	v
1.	INTE	RODUCTION	1
	1.1	Site Identification	1
	1.2	Scope of Work	2
	1.3	General Limitations	3
2.	PRC	PERTY DESCRIPTION	4
	2.1	Surficial Geology	4
	2.2	Hydrogeology	5
3.	REC	ORDS REVIEW	6
	3.1	Street Directories	6
	3.2	Aerial Photographs	6
	3.3	Land Use Maps	7
	3.4	Fire Insurance Maps	7
	3.5	Ministry of Environment Site Registry Search	7
	3.6	Water Well Search	9
4.	SITE	RECONNAISSANCE	10
	4.1	Grounds Survey	10
	4.2	Building Survey	11
	4.3	Special Attention Substances	13
	4.4	Adjacent Properties	13
5.	INTE	ERVIEWS	15
6.	SUM	MARY, DISCUSSION AND CONCLUSIONS	16
	6.1	On-Site Summary	16
	6.2	Off-Site Summary	18
	6.3	Summary of APECs	20
	6.4	Conclusion	20
7.	PRC	PFESSIONAL STATEMENT	21
8.	REF	ERENCES	22

LIST OF APPENDED FIGURES

Figure 1	Site, Location and Surrounding Land Use Plan
Figure 2	Areas of Potential Environmental Concern

LIST OF APPENDED TABLES

Table 1	On-Site Historical Review Summary
Table 2	Off-Site Historical Review Summary
Table 0	Off Cite On anothers of Environmental

Table 3 Off-Site Operations of Environmental Concern

LIST OF APPENDICES

Appendix A	Photographic Documentation
Appendix B	Current Land Title

Appendix C Ministry of Environment Site Registry Search Results

Appendix D General Terms and Conditions for Services

LIST OF ACRONYMS

APEC AREA OF POTENTIAL ENVIRONMENTAL CONCERN

AST ABOVEGROUND STORAGE TANK

AW AQUATIC LIFE WATER USE (SITE SPECIFIC)

BGS BELOW GROUND SURFACE

BH BOREHOLE

BTEX BENZENE, TOLUENE, ETHYLBENZENE AND XYLENE

CCME CANADIAN COUNCIL OF MINISTERS OF THE ENVIRONMENT

CL COMMERCIAL LAND USE (SITE SPECIFIC)

COC CERTIFICATE OF COMPLIANCE
CSR CONTAMINATED SITES REGULATION

DNAPL DENSE NON-AQUEOUS PHASE LIQUIDS

DSI DETAILED SITE INVESTIGATION

DW DRINKING WATER USE (SITE SPECIFIC)

EH EXTRACTABLE HYDROCARBONS

EM ELECTROMAGNETIC

EMA ENVIRONMENTAL MANAGEMENT ACT

EPH EXTRACTABLE PETROLEUM HYDROCARBONS

ERA ECOLOGICAL RISK ASSESSMENT
ESA ENVIRONMENTAL SITE ASSESSMENT

GPR GROUND PENETRATING RADAR

HEPH HEAVY EXTRACTABLE PETROLEUM HYDROCARBONS IN SOILS

HEPH_W HEAVY EXTRACTABLE PETROLEUM HYDROCARBONS IN GROUNDWATER

HHERA HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT

HWR HAZARDOUS WASTE REGULATION

IL INDUSTRIAL LAND USE (SITE SPECIFIC)
IW IRRIGATION WATER USE (SITE SPECIFIC)

LEPH LIGHT EXTRACTABLE PETROLEUM HYDROCARBONS IN SOILS

LEPH_W LIGHT EXTRACTABLE PETROLEUM HYDROCARBONS IN GROUNDWATER

LNAPL LIGHT NON-AQUEOUS PHASE LIQUIDS LW LIVESTOCK WATER USE (SITE SPECIFIC)

MBG METRES BELOW GRADE

MBGS METRES BELOW GROUND SURFACE

MOE MINISTRY OF ENVIRONMENT
MTBE METHYL TERTIARY BUTYL ETHER

MW MONITORING WELL

LIST OF ACRONYMS (CONT'D)

NAPL NON-AQUEOUS PHASE LIQUID

NS NO STANDARD

NWU NO WATER USE (SITE SPECIFIC)

OWS OIL/WATER SEPARATOR

PAH(s) POLYCYCLIC AROMATIC HYDROCARBONS

PCB(s) POLYCHLORINATED BIPHENYLS

PCOC(s) POTENTIAL CONSTITUENT(S) OF CONCERN

PERC PERCHLOROETHYLENE

PL URBAN PARK LAND USE (SITE SPECIFIC)

PPM PARTS PER MILLION

PSI 1 PRELIMINARY SITE INVESTIGATION – STAGE 1
PSI 2 PRELIMINARY SITE INVESTIGATION – STAGE 2

PST PETROLEUM STORAGE TANK SITES

QA/QC QUALITY ASSURANCE/QUALITY CONTROL

RL RESIDENTIAL LAND USE (SITE SPECIFIC)
RPD RELATIVE PERCENTAGE DIFFERENCE

SRR SPILL REPORTING REGULATION

SSI SUPPLEMENTAL SITE INVESTIGATION

TP TEST PIT

UFFI UREA FORMALDEHYDE FOAM INSULATION
UL URBAN PARK LAND USE (SITE SPECIFIC)
USEPA ENVIRONMENTAL PROTECTION AGENCY (U.S.)

UST UNDERGROUND STORAGE TANK

VH_W VOLATILE HYDROCARBONS IN GROUNDWATER

VOC(S) VOLATILE ORGANIC COMPOUNDS

VPH VOLATILE PETROLEUM HYDROCARBONS IN SOILS

VPH_W VOLATILE PETROLEUM HYDROCARBONS IN GROUNDWATER

WQG WATER QUALITY GUIDELINES

1. INTRODUCTION

This KEYSTONE ENVIRONMENTAL LTDTM Phase I Environmental Site Assessment (ESA) was prepared at the request of Le Kiu Holdings Ltd. for the two properties referenced as 370 and 456 Prior Street, in the City of Vancouver, BC (the Site)². The Site location is shown on Figure 1 and photographs of the Site are included in Appendix A.

This Phase I ESA was conducted to determine the potential for constituents of concern to be present in the soil, groundwater and/or vapour at the Site at concentrations greater than the applicable standards as outlined in the BC Contaminated Sites Regulation (CSR). It is understood that this report will be used in conjunction with the potential divestment of the Site.

1.1 Site Identification

The Site is identified as follows³:

370 Prior Street, Vancouver

Parcel Identifier: 010 292 187

Legal Description: Lot A, Blocks 2 To 7, 9 And 20 District Lots 181, 196 And 2037

Plan 7989

456 Prior Street, Vancouver

Parcel Identifier: 010 292 209

Legal Description: Lot B, Blocks 2 To 7, 9 and 20 District Lots 181, 196 and 2037

Plan 7989

³ 550 Malkin Street and 454 Prior Street are alternate addresses associated with the Site. According to historical records, 436 and 450 Prior Street were former addresses associated with the Site.

Project 12108 / May 2013

One off-Site property (410 Prior Street) is located between the two portions of the Site (370 and 456 Prior Street).

The Site

Current Registered Owner: Le Kiu Holdings Ltd., Inc. No. 865077

Current Zoning: 13 (Industrial District)

Site Area: 8,120 m² (approximate)

Latitude: 49° 16' 34.6" North (approximate)

Longitude: 123° 5' 41.3" West (approximate)

The approximate latitude and longitude entered for the Site was determined from BC Water Resource Atlas (http://www.env.gov.bc.ca/wsd/data_searches/wrbc/index.html).

1.2 Scope of Work

The scope of work for this study was conducted in general accordance with the requirements of the Canadian Standards Association (CSA) Phase I Environmental Site Assessment (ESA) standards as outlined in the CSA publication Z768-01 and included the following tasks:

- A review of historical records including city street directories, aerial photographs, land use maps, fire insurance maps, the BC Ministry of Environment (MOE) on-line Site Registry, the BC Water Resources Atlas, and a current land title.
- A Site reconnaissance to observe Site conditions which may indicate the potential presence
 of contamination and to prepare a photographic record.
- A review of documents and reports relating to waste management and site contamination.
- A preliminary building survey for special attention substances such as asbestos, polychlorinated biphenyls (PCBs), and urea formaldehyde foam insulation (UFFI) which may be present in construction materials at the Site.

Previous environmental or geotechnical reports, if conducted, were not provided for review.

A current land title was obtained via the Land Title and Survey Authority website. Leases, title transfers or easements related to site contamination issues, and Section 219 Covenants were not listed in the land title. A copy of the land title is provided in Appendix B.

1.3 General Limitations

Findings presented in this report are based upon (i) a limited visual review of accessible areas of the Site building and surrounding grounds, (ii) interviews with personnel familiar with Site activities, and (iii) a review of Site, environmental agency and historical archive records. Sampling and analysis of wastes, water, soil, groundwater or air was not conducted as part of this review. Consequently, while findings and conclusions documented in this report have been prepared in a manner consistent with that level of care and skill normally exercised by other members of the environmental science and engineering profession practising under similar circumstances in the area at the time of the performance of the work, this report is not intended nor is it able to provide a totally comprehensive review of past or present Site environmental conditions. This report is intended to provide information to reduce, but not necessarily eliminate, uncertainty regarding the potential for contamination of a property. Where this potential has been identified, the further reduction of uncertainty requires the performance of a Phase II ESA.

This report has been prepared solely for the internal use of Le Kiu Holdings Ltd., pursuant to the agreement between Keystone Environmental Ltd. and Le Kiu Holdings Ltd. A copy of the general terms and conditions associated with this agreement is attached in Appendix D. By using the report, Le Kiu Holdings Ltd. agrees that they will review and use the report in its entirety. Any use which other parties make of this report, or any reliance on or decisions made based on it, are the responsibility of such parties. Keystone Environmental Ltd. accepts no responsibility for damages, if any, suffered by other parties as a result of decisions made or actions based on this report.

2. PROPERTY DESCRIPTION

The Site consists of rectangular lot (370 Prior Street) and one irregularly shaped lot (456 Prior Street) located on the south side of Prior Street, between Malkin Avenue/Jackson Avenue and Dunlevy Avenue, in the City of Vancouver, BC. The total area of the Site is approximately 8,570 m². The Site is currently occupied by a multi-tenant warehouse and office building.

One off-Site property (410 Prior Street) is located between the two portions of the Site (370 and 456 Prior Street). The property at 410 Prior Street is currently owned by the City of Vancouver occupied by a paved parking area associated with the Site.

The Site is bordered to the north (across Prior Street) by single family residences, to the east (along Prior Street) by a commercial building and single family residences (across Malkin Avenue); to the south by a vacant lot and a Trillium Park, and to the west (along Prior Street), by a vacant industrial building and vacant lots. The Site and properties located in the vicinity of the Site are shown on Figure 1. Selected photographs of the Site are included in Appendix A.

2.1 Surficial Geology

The local surficial geology of the area was determined by consulting the Geological Survey of Canada Map 1486A (1979). According to the map, the stratigraphy of the Site varies between the north and south portions of the Site, as follows.

The stratigraphy on the north portion of the Site consists of Vashon Drift and Capilano Sediment deposits of the Post Glacial age. This unit consists of glacial drift including lodgement and minor flow till, lenses and interbeds of substratified glaciofluvial sand to gravel, and lenses and interbeds of glaciolacustrine laminated stony silt; up to 25 m thick; in most places correlates with Vashon Drift; overlain by glaciomarine and marine deposits similar to Capilano Sediments, normally less than 3 m but in places up to 10 m thick. Marine derived lag gravel normally less than 1 m thick containing marine shell casts has been found mantling till and glaciomarine deposits up to 175 m above sea level; above 175 m till is mantled by bouldery gravel that may be in part ablation till, in part colluvium, and in part marine shore in origin. Bedrock is located more than 10 m below surface.

The stratigraphy on the south portion of the Site consists of landfill including sand, gravel, till, crushed stone, and refuse. This is consistent with the south portion of the Site being formerly occupied by False Creek. A City of Vancouver Fire Insurance Map from 1930, indicates that the historical high-water mark of False Creek (prior to infilling the False Creek flats), was located on the south portion of the Site. Based on Keystone Environmental's experience in the area, approximately 1.5 m to 2.5 m of fill was observed overlying marine deposits (comprised of sandy silt to silty sand) to the south of (below) the original high-water mark, and approximately 1.4 m of fill was found overlying till (comprised of dense silt) to the north of (above) the original high-water mark.

2.2 Hydrogeology

Groundwater is expected to follow topography, flowing from areas of higher elevation to areas of lower elevation. Local groundwater flow direction may vary as a result of local conditions such as topography, geology and the presence of drainage channels and buried utilities, and is subject to confirmation with field measurements. At the Site, the local topography slopes down towards the south-southwest (approximate grade of 3%). False Creek is located approximately 575 m west-southwest of the Site. Based on the Keystone Environmental's experience in the area, the primary groundwater flow direction in the area is to the west, towards False Creek. Therefore, based on the local topography and previous investigations conducted in the area, the groundwater flow direction at the Site is inferred to be towards the west-southwest. It is anticipated that groundwater flows to the Site from adjacent properties and up-gradient properties to the east and northeast of the Site.

A Vancouver Old Streams map (UBC, 2011) indicates that a former stream was located on the southeast portion of the Site, as shown on Figure 1.

Based Keystone Environmental's experience in the area, the depth to groundwater in the vicinity of the Site is approximately 0.4 meters below grade (mbg) to 1.6 mbg.

3. RECORDS REVIEW

Various documents were reviewed for information concerning past uses of, and activities at the Site and properties located in the vicinity of the Site. Based on the anticipated groundwater flow direction in the area (Section 2.2), the vicinity of the Site is defined as approximately 120 m east/northeast (up-gradient), 100 m north/northwest and south/southeast (cross-gradient), and approximately 80 m west/southwest (down-gradient) of the Site. The documents reviewed for information concerning historical land use include street directories, aerial photographs, land use maps, fire insurance maps, the MOE Site Registry, and the BC Water Resources Atlas.

3.1 Street Directories

Selected Vancouver City Street Directories, dated 1890, 1895, 1900, 1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940, 1945, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1991, 1993/94, 1995/96, 1998, and 2001, were reviewed to obtain information regarding the occupancy of the Site and surrounding area. Street directories were not compiled for the vicinity of the Site prior to 1890, or after 2001. On-Site operations listed within the selected street directories are summarized in Table 1. Off-Site operations of potential environmental concern are listed in Table 2.

3.2 Aerial Photographs

Aerial photographs, dated 1930, 1949, 1954, 1963, 1970, 1976, 1981, 1986, 1994, 1999, 2004, 2009, and 2011⁴, were reviewed for information concerning historical physical features and land use on the Site and properties in the vicinity of the Site. A summary of the on-Site observations made during the aerial photograph review is listed in Table 1.

The properties located to the north of the Site have been occupied by single family residences since the 1930s, or earlier. The properties located to the east and west of the Site have been primarily occupied by industrial operations and the since the 1930s, or earlier. The property located to the south of the Site was occupied by a rail yard from the 1930s to the late 1980s, and has remained vacant since the early 1990s. A summary of off-Site observations from the aerial photographs are listed in Table 2.

⁴ The 2011 aerial photograph was obtained from the City of Vancouver online mapping service (VanMap).

Project 12108 / May 2013

3.3 Land Use Maps

City of Vancouver land use maps, dated 1971, 1980, and 1983, were reviewed. A summary of the on-Site observations made during the land use map review is listed in Table 1. Off-Site operations of potential environmental concern identified in the land use maps are listed in Table 2.

3.4 Fire Insurance Maps

City of Vancouver fire insurance maps, dated 1913, 1930, 1946, and 1956, were reviewed. A summary of the on-Site observations made during the fire insurance map review is listed in Table 1. Off-Site operations of potential environmental concern identified in the fire insurance maps are listed in Table 2.

3.5 Ministry of Environment Site Registry Search

An on-line search of the Ministry of Environment (MOE) Site Registry was conducted to determine if it contained information regarding soil, groundwater and/or vapour contamination for properties within a 500 m radius of the Site. The search was centred on 49° 16' 34.6" North by 123° 5' 41.3" West, the approximate latitude and longitude entered for the area of the Site. A copy of the search results is provided in Appendix C.

At the time of the on-line search (May 9, 2014), the Site Registry had been updated to May 4, 2014. The Site is not listed. Forty six (46) off-Site properties are listed in the Site Registry; four of which are located within the vicinity of the Site, as follows:

- Site ID: 1100 1002 Station Street, located adjacent to the south of the Site;
- Site ID: 6477 310 Prior Street, located adjacent to the west of the Site;
- Site ID: 6478 250 Prior Street, located approximately 70 m west of the Site; and
- Site ID: 12143 580 Malkin Street, located approximately 20 m southeast of the Site.

Detail Reports were obtained for the three above-listed properties, and pertinent information from the Detail Reports is summarized as follows:

ID: 1100 – 1002 Station Street (adjacent to the south of the Site)

- The property was registered in October 1997 and was updated in April 2014.
- The property status is "Active Under Remediation".
- The location description including the Burlington Northern Railroad within the east False Creek Industrial Lands.
- The property at 1100 Station Street was classified as non-high risk in March 2013.
- A Notice of Independent Remediation (NOIR) completion was submitted in November 2011.
- Approval in Principles (AiP) were issued in February 1999 (with nine conditions) and in July 1999. Multiple monitoring reports were submitted from to 1999 to 2011 in conjunction with the 1999 AiP.
- A Remediation Plan and Risk Assessment were submitted to the MOE in September 1993.
- The suspected land uses for this property included "Chemical Industries and Activities⁵",
 "Landfill Industrial Waste³", "Metal Salvage Operations³", "Metal Smelting/ Processing/ Finishing Industries/ Activities³", "Petro. Prod.,/ Produce Water Strg Abvegrnd/ Undergrnd Tanks", and, "Rail Car/Locomotive Maintenance/ Clean/ Salvage Incl. Railyards."

Site ID: 6477 – 310 Prior Street (adjacent to the west of the Site)

- The property was registered in March 2000 and updated in March 2013.
- The property status is "Active Under Remediation."
- Activities were not reported for this property.

Site ID: 6478 – 250 Prior Street (approximately 70 m west of the Site)

- The property was registered in March 2000 and was updated in March 2103.
- The property status is "Active Under Remediation."
- An Approval in Principle was issued for the property in June 2000 with requirements of soil and groundwater monitoring. Monitoring reports were submitted from 2009 to 2011.

⁵ Noted that possible contamination source is from an adjacent property.

Site ID: 12143 - 580 Malkin Street (approximately 20 m southeast of the Site)

- The property was registered in March 2010 and was updated in January 2011.
- The property status is "Active Remediation Complete."
- A Certificate of Compliance (CofC) was issued using Risk-based standards in December 2010. In the CofC, restrictions were placed pertaining to land and water use, building construction, soil cover and vegetation, performance verification, and record keeping.
- In November 2010, the property was classified as non-high risk.
- The suspected land uses for this property included "Petro. Prod.,/ Produce Water Strg Abvegrnd/ Undergrnd Tanks", and, "Rail Car/Locomotive Maintenance/ Clean/ Salvage Incl. Railyards."

The remaining forty-two (42) off-Site properties are located greater than 100 m west (cross-gradient), 200 m northwest (cross-gradient), and 180 m northeast (up-gradient) of the Site. Based on the distances from the Site, there is considered to be a low potential for the remaining forty-two listed properties to be considered areas of potential environmental concern (APECs) to the Site.

3.6 Water Well Search

The BC Water Resource Atlas, which displays groundwater management information for the Province of BC, was accessed on May 9, 2014. A search was conducted to determine if groundwater wells were located within 500 m of the Site. Groundwater water wells were not identified within the vicinity of the Site.

4. SITE RECONNAISSANCE

Keystone Environmental personnel visited the Site on May 13, 2014, accompanied by Mr. Michael Dignan, Property Manager for the Site. The purpose of the visit was to observe operations and conditions at the Site as well as neighboring properties to determine the potential for contamination at the Site and to prepare photographic documentation. Representative photographs taken during the Site reconnaissance are included in Appendix A.

The building is currently occupied by various food import and distribution operations, such as Le Kiu Importing Co. (a food import and distribution operation), Le Kiu Poultry (a poultry processing operation), Asian Family Foods (a packaging and distribution operation), and Vancouver Ballroom (a second storey dance studio). The building is constructed at grade; basements, crawlspaces, and/or underground parking areas are not present on the Site.

The warehouse, storage areas, and offices were viewed. Stored materials (primarily retail stock and shelving units) limited observations of the underlying areas inside the Site building. The chicken processing operation located in the central portion of the building was not viewed.

The grounds of the Site were viewed. Parked vehicles limited observations of the underlying areas on the Site grounds.

4.1 Grounds Survey

The following was observed by Keystone Environmental personnel, or was reported by Mr. Dignan, during the Site reconnaissance:

- The existing warehouse building occupied approximately 60% of the Site. The remaining 40% was occupied by paved parking and/or loading areas.
- On the northeast portion of the Site, a former propane fuel shed was observed. It was reported by Mr. Dignan, that the propane fuel station was decommissioned in circa 2011. Currently the shed is used for storage.
- A natural gas connection was observed on the west side of the Site building.
- Two unknown cut-off metal pipes and one circular metal cover (flush with the ground) were observed to the northwest of the Site building. The circular metal cover was located in a concrete pad approximately 5 m x 3 m in area, indicative of potential UST beneath the concrete patch.

- Various rectangular metal covers were observed in the paved areas to the north of the Site building. Mr. Dignan, lifted the cover on the northwest portion of the Site, and it was observed to contain water. It is anticipated that these are potentially catch basins and/or oil/water separators to address run-off in the paved parking areas.
- Groundwater monitoring wells were not observed on the grounds of the Site.
- In association with the on-Site operations, constituents of concern were not observed to be stored on the Site grounds.
- Pole mounted transformers were observed on the north portion of 370 Prior Street. Staining was not observed on the poles, or on the ground surface in the vicinity of the poles.
- Two 205 L steel drums were located on the northeast portion of the Site. The contents of the
 drums were unknown by Mr. Dignan. The drums were sealed and staining and/or overspill
 was not observed on the drums or on the unpaved ground surface in the vicinity of
 the drums.

4.2 Building Survey

The following was observed by Keystone Environmental personnel, or was reported by Mr. Dignan, during the Site reconnaissance.

- The Site building had concrete foundation and concrete brick exterior. Below grade structures (such as basements, crawlspaces and/or underground parking) are not located beneath the Site building.
- The south portion of the building has a second storey that was occupied by various offices, storage areas, and a dance studio. The main floor of the building was occupied by various walk-in refrigeration (cooler) units, warehouse areas, offices, and a poultry processing operation.
- Floor drains were observed throughout the warehouse. It was reported by Mr. Dignan that the drains are connected to the City of Vancouver municipal sewer system.
- A rectangular metal plate was observed in the concrete in the west portion of the warehouse. It is anticipated that the metal plate may be associated with a former scale.
- Fluorescent lighting was observed to be used throughout the building.

- The warehouse was observed to be heated by natural gas fired roof-mounted units.
- A battery charging station for the on-Site forklifts was located in the north portion of the warehouse.
- A maintenance room / work shop was located within a former walk-in cooler located in the southwest portion of the Site building. The area is used by the building management to conduct small-scale repairs and handy-man type activities (constructing shelves, fixing support legs, etc.). Floor drains were observed in the concrete floor of the walk-in cooler. Hydrocarbon-like staining was not observed on the concrete floors.
- It was reported by Mr. Dignan that workshop was formerly occupied by a wood working operation (from circa the mid-1990s to the early 2010s). Former woodworking activities primarily included sawing and nailing wood. Painting and/or wood treating was not conducted on the Site. Paint over-spray was not observed on the concrete surface in the workshop.
- A refrigeration mechanical room and a former boiler room were located in the southwest portion of the warehouse. Mr. Dignan was unaware of the historical use of the boiler. Currently, the room is primarily used for storage, and various small quantities of degreasers and detergents (less than 10 L capacity each) were observed in the boiler room. Multiple floor drains and/or sumps were observed in the vicinity of the boiler. Hydrocarbon-like staining and/or cut off pipes, indicative of potential heating oil USTs, were not observed in the vicinity of the boiler.
- Two drums and an oil drip tray were observed on the north-central portion of the Site building. It was reported by Mr. Dignan that some tenants may conduct minor repairs and/or maintenance of their trucks on the Site. Constituents of concern indicative of automotive repairs were not observed on the remaining areas of the Site.
- It was reported by Mr. Dignan that two elevators are located within the Site building. One is located in the warehouse portion of the building and one is located in the southwest corner of the building (associated with office on the second floor). The elevators were installed in the 1980s as requirement for work-place regulations. The elevators were not used, and therefore, were eventually boarded up. Since the elevators are not used, maintenance records of the elevators were not available for review. Mr. Dignan was unaware of what type of elevators they were (hydraulic-piston or cable).

• A parking garage with one bay door was located on the northeast portion of the Site building It was reported by Mr. Dignan that the garage used to be used to park trucks overnight. Maintenance and/or repairs were not conducted in the garage. Stored materials limited observations of the interior of the garage during the Site reconnaissance.

4.3 Special Attention Substances

Based on the age of the Site building (constructed in the late 1940s), the potential for special attention substances such as asbestos, polychlorinated biphenyls (PCBs) and/or Urea Formaldehyde Foam Insulation (UFFI) to be present are as follows:

- There is a potential for asbestos (phased out in North America by the mid-1980s) to be
 present in building materials, such as wallboard/gyproc, ceiling tiles, built up roof systems,
 piping insulation, cement products, grouts, plaster, compressed papers and boards,
 duct tape, floor tiles, sealants, and protective coatings.
- There is a potential for current-regulating ballasts, transformers, and capacitors manufactured prior to 1980, that may potentially contain PCB, to be present on the Site.
- There is considered to be a low potential for UFFI to be present on the Site based on the lack of observed injection holes.

The presence or absence of such special attention substances have not been confirmed in the Site structures and where the potential has been identified, the further reduction of uncertainty requires the performance of a Hazardous Materials building survey. Where building materials may or do contain asbestos containing materials, WorkSafe BC stipulates requirements for their management during maintenance, renovation or demolition.

4.4 Adjacent Properties

The following was observed on the surrounding properties during the Site reconnaissance:

- The properties located to the north of the Site (across Prior Street) were occupied by single family residences.
- The properties located to the west of the Site were primarily vacant with the exception of one vacant warehouse building, located adjacent to the Site at 310 Prior Street.

- The property located to the southwest of the Site was primary vacant. Parked vehicles, associated with a car dealership, were observed approximately 100 m southwest of the Site.
- The property located to the southeast of the Site was occupied by Trillium Park (580 Malkin Street). The portion located within the vicinity of the Site was fenced and under development.
- The property located adjacent to the northeast of the Site (496 Prior Street) was occupied by White Monkey Design, a sculpting and special effects operation for the film industry. The property located east of the Site (Malkin Avenue) were occupied by single family residences.
- Drinking water wells were not observed in the vicinity of the Site.

5. INTERVIEWS

An interview was conducted on May 13, 2014 with Mr. Michael Dignan, Property Manager for the Site. Mr. Dignan has been the Property Manager for approximately three years. He reported the following:

- The propane fuel station, formerly located on the northeast portion of the Site, was decommissioned in circa 2011. Currently the shed is used for storage.
- Floor drains in the warehouse are connected to the City of Vancouver municipal sewer system.
- A maintenance room / work shop was located within a former walk-in cooler located in the southwest portion of the Site building. The area is used by the building management to conduct small-scale repairs and handy-man type activities (constructing shelves, fixing support legs, etc.). Floor drains were observed in the concrete floor of the walk-in cooler. Hydrocarbon-like staining was not observed on the concrete floors.
- It was reported by Mr. Dignan that workshop was formerly occupied by a wood working operation (from circa the mid-1990s to the early 2010s). Former woodworking activities primarily included sawing and nailing wood. Painting and/or wood treating was not conducted on the Site.
- Mr. Dignan was unaware of the historical use of the boiler located in the boiler room in the southwest portion of the warehouse.
- Two drums and an oil drip tray were observed on the north-central portion of the Site building. It was reported by Mr. Dignan that some tenants may conduct minor repairs and/or maintenance of their trucks on the Site.
- The two on-Site elevators were installed in the 1980s as requirement for work-place regulations. The elevators were not used, and therefore, were eventually boarded up. Mr. Dignan was unaware of what type of elevators they were (hydraulic-piston or cable).
- It was reported by Mr. Dignan that the parking garage located on the northeast portion of the Site was used to be used to park trucks overnight. Maintenance and/or repairs were not conducted in the garage.
- Back-up generators are not located on the Site.
- The contents of the two 205 L steel drums located on the northeast portion of the Site was not known by Mr. Dignan.

6. SUMMARY, DISCUSSION AND CONCLUSIONS

This Phase I ESA report was prepared at the request of Le Kiu Holdings Ltd., for the two properties referenced as 370 and 456 Prior Street, in the City of Vancouver, BC (the Site)⁶. The total area of the Site is approximately 8,570 m². The Site is currently occupied by a multitenant warehouse and office building.

One property (410 Prior Street) is located between the two portions of the Site (370 and 456 Prior Street). The property at 410 Prior Street is owned by the City of Vancouver and is currently occupied by a paved parking area associated with the Site.

6.1 On-Site Summary

Site History

In 1910, a former shingle manufacturer was located on the Site. From the early 1920s, or earlier, to the mid-1940s, a former building was located on the west portion of the Site at 436 Prior Street. Historical records indicated that the former building was occupied by a contractor's warehouse (Grant Smith & Co.) and a former logging supply operation (F&F Equipment).

In the late 1940s, the former building was removed and the west and central portions of the existing warehouse were constructed. The east portion of the existing warehouse was added in the late 1950s/early 1960s. A former rail spur was located on the south perimeter of the Site, adjacent to the south of the existing warehouse, from the late 1940s to the mid-1970s. The rail spur was removed in the late 1970s, and the Site has remained relatively unchanged since the 1970s. Occupants of the existing warehouse included Slade & Stewart, a grocery distributor, from the 1950s to the mid-1980s. Since the mid-1980s, various grocery, importing, wholesale, and office operations have occupied the Site.

⁶ 550 Malkin Street and 454 Prior Street are alternate addresses associated with the Site. According to historical records, 436 and 450 Prior Street were former addresses associated with the Site.

Project 12108 / May 2013

APEC 1 - Fill Material (south portion of the Site)

Fire insurance maps from 1930 indicate that the historical high water mark of False Creek (prior to infilling the False Creek flats) was located on the south portion of the Site; and a Vancouver Old Streams map indicates that a former stream was located on the south portion of the Site, as shown on Figure 1. Based on the unknown origin and quality of the material used to fill the south portion of the Site, there is considered to be a potential for constituents of concern associated with the fill material to be present in Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.

APEC 2 - Heating Oil and USTs

It is unknown how, or if, the former structure on the Site were heated. If they were heated, wood, coal, electricity, or heating oil may have been used. If heating oil was used, it would have been stored in above ground storage tanks (ASTs) and/or underground storage tanks (USTs). The former building located on the Site was located within the footprint of the existing Site building; therefore, if heating oil USTs were present; it is likely that they would have been removed during the redevelopment of the Site in the 1940s.

Currently, the Site building is connected to natural gas. It is unknown how the building was heated prior to natural gas connection. A former boiler was observed in the southwest portion of the building; however it is unknown how it was fuelled. During the Site reconnaissance, two cutoff metal pipes indicative potential vent pipes were observed top the northwest of the existing Site building. In addition, one circular metal cover (flush with the ground) was observed to the northwest of the Site building (in the vicinity of the cut-off pipes). The circular metal cover was located in a concrete pad approximately 5 m x 3 m in area, indicative of potential UST beneath the concrete patch. Therefore, there is a potential for a potential UST to be located on the northwest portion of the Site.

Remaining On-Site Activities

Aerial photographs indicate that a former rail spur was located on the south perimeter of the Site from the 1940s to the 1970s. The former rail spur ran adjacent to the loading platform on the south perimeter of the Site (currently the platform is enclosed and used for storage). Based on

observations from aerial photographs and fire insurance maps, it is anticipated that the rail spur was used for loading activities, and that repairs or maintenance was not conducted on the Site. Therefore, there is considered to be a low potential for constituents of concern associated with the rail spur to be present in Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.

A former shingle manufacturer was located on the Site in 1910. Based on the duration of time since the operations has ceased and the redevelopment of the Site, there is considered to be a low potential for constituents of concern associated with the rail spur to be present in Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.

The Site has been used for commercial purposes since the early 1920s. Operations of potential environmental concern were not identified to have been conducted on the Site since the 1920s.

6.2 Off-Site Summary

The off-Site properties located to the north of the Site have been occupied by single family residences since the 1930s, or earlier. The properties located to the east and west of the Site have been primarily occupied by industrial operations and the since the 1930s, or earlier. The property located to the south of the Site was occupied by a rail yard from the 1930s to the late 1980s, and has remained primarily vacant since the early 1990s.

A shown in Table 3, eleven off-Site properties were identified as having been occupied by historical operations of potential environmental concern. Of the eleven, the following three were identified as Areas of Potential Concern (APECs) to the Site:

APEC 3 – 310 Prior Street (adjacent to the west of the Site)

Various metals and smelting operations were located at 310 Prior Street, adjacent to the west of the Site, from the 1930s to the 1960s. The property is listed in the MOE Site Registry as "Active – Under Remediation"; however, further activities were not reported for the property. Based on the adjacent proximity to the Site and the duration of the former smelting operations, there is considered to be a moderate potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.

APEC 4 – 496 Prior Street (adjacent to the east of the Site)

A former ink manufacturer was located at 496 Prior Street, adjacent to the east of the Site, from the 1930s to the 1960s. Aerial photographs show that the existing building has been located on the property since the 1930s. Given that the property has not been redeveloped and that it is located adjacent and up-gradient to the Site, there is considered to be a moderate potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.

APEC 5 – Former Rail yard at 1002 Station Street (adjacent to the south-southwest of the Site)

A former rail yard, with various buildings containing repair and machine shops, was located at 1002 Station Street, adjacent to the south of the Site from the 1930s, or earlier, to the 1980s. The property has been primarily vacant since the late 1980s. The property is listed in the MOE Site Registry as "Active - Under Remediation." The property was classified as non-high risk and a NOIR completion was submitted in November 2011. Aerial photographs show former building located approximately 10 m south of the Site, from the early 1970s to the late 1980s. Based on the proximity to the Site, the unknown details of the investigations conducted on the property, and the fact that property has not been redeveloped, there is considered to be a potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.

Remaining Off-Site Properties

The remaining eight off-Site properties are considered to have a low potential to be APECs to the Site, primarily based on the down to cross-gradient distance from the Site, the length of time since the historical operations have ceased, and/or the issuance of a CofC. Details of the off-Site APECs are provided in Table 3.

6.3 Summary of APECs

The following areas of potential environmental concern (APECs) were identified for the Site and are shown on Figure 2:

- APEC 1 On-Site fill material on the south portion of the Site
- APEC 2 On-Site potential heating oil and/or other USTs
- APEC 3 Off-Site former smelting and metal operations at 310 Prior Street from the 1930s to the 1960s (adjacent to the west of the Site)
- APEC 4 Off-Site former ink manufacturing operation at 496 Prior Street from the 1930s to the 1960s (adjacent to the east of the Site)
- APEC 5 Off-Site former rail yard at 1002 Station Street from the 1920s to the 1980s (adjacent to the south-southwest of the Site)

6.4 Conclusion

There is a potential for constituents of concern associated with historical on and off-Site activities to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the applicable standards provided in the British Columbia Contaminated Sites Regulation.

7. PROFESSIONAL STATEMENT

Keystone Environmental Ltd.⁷ confirms that this report titled *Report of Findings – Phase I Environmental Site Assessment, 456 Prior Street, Vancouver, BC* has been prepared in general accordance with CSA Standard Z768-01.

This report was prepared by Jodine Restiaux, reviewed by Nicole MacDonald and Michael Gareghty, and is subject to the General Terms and Conditions appended at the end of the report.

May 23, 2014
Date
Jodine Restiaux, B.Sc., A.Ag.
Environmental Scientist

Nicole MacDonald, B.Sc., P.Ag. Project Manager

Michael Geraghty, M.Sc., P.Geo. Senior Project Manager

Keystone Environmental Ltd.'s corporate address is:
 Suite 320 - 4400 Dominion Street, Burnaby, BC V5G 4G3
 Telephone: 604-430-0671 / Facsimile: 604-430-0672 / Internet: www.keystoneenviro.com

8. REFERENCES

Aerial photographs dated:

1930: A2234: 74

1949: BC728:20, 21

1954: BC1673:3

1963: BC5061:110

1970: 21409: 136, 137

1976: BC5720: 194, 195

• 1981: A25666: 21, 22

• 1987: BC86039: 147, 148

1994: FFC94: 224, 225

1999: SRS6068: 29, 30

2004: SRS6929: 97, 98

2009: SRS7987: 363

• 2011: obtained from the City of Vancouver online mapping service (VanMap)

BC Ministry of Environment (MOE) Site Registry via BC Online: https://www.bconline.gov.bc.ca/

City of Vancouver land use maps dated 1971, 1980, and 1983.

City of Vancouver online mapping service (VanMap):

http://map.city.Vancouver.bc.ca/website/gis/viewer.htm

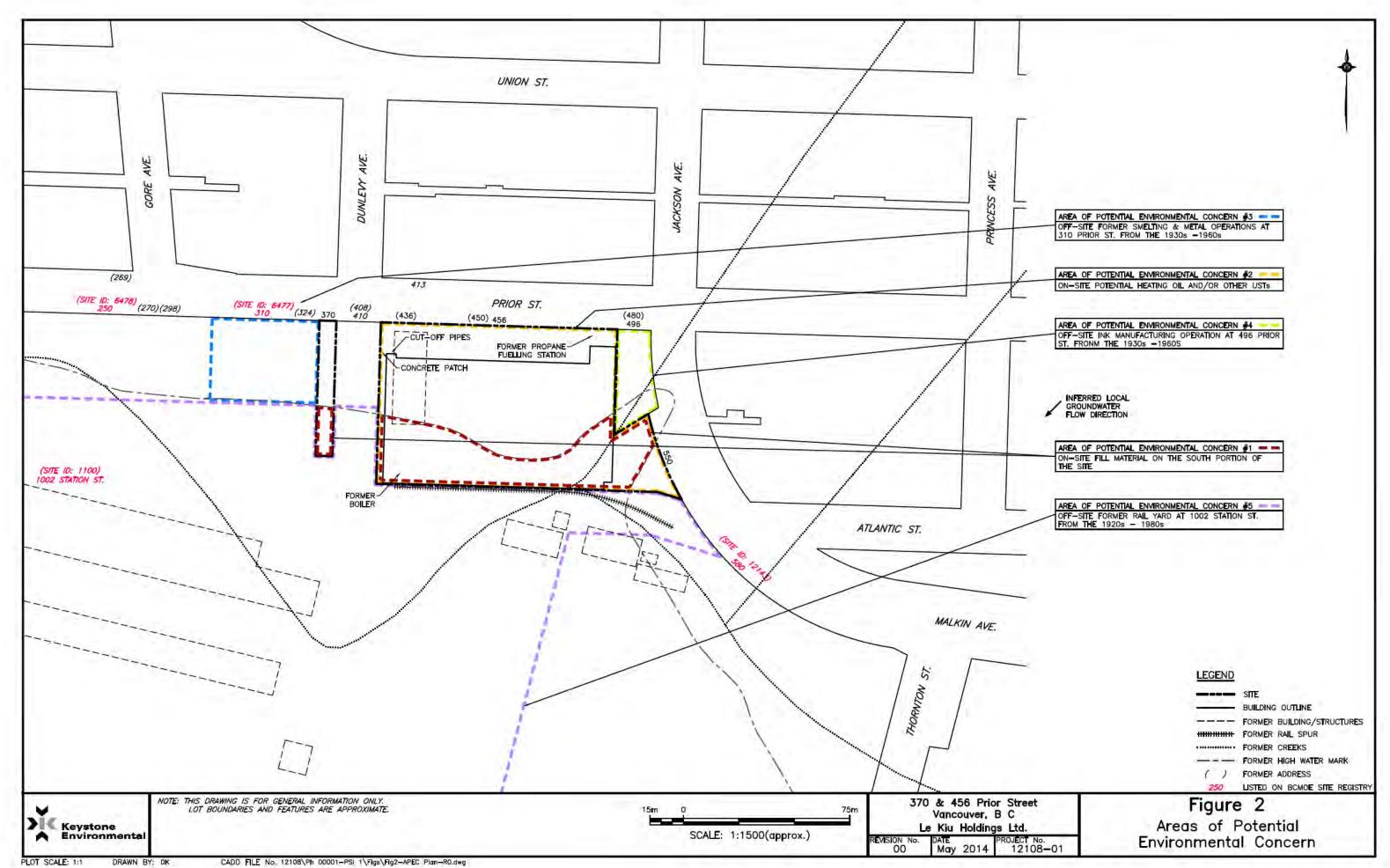
Current Land Title obtained via LTSA website: https://help.ltsa.ca/

Geological Survey of Canada Map 1486A, dated 1979

Google Earth: http://www.google.com/earth/index.html

Greater Vancouver Street Directories, dated 1890, 1895, 1900, 1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940, 1945, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1991, 1993/94, 1995/96, 1998, and 2001

University of British Columbia (UBC) Vancouver Old Streams map, dated 2011


Water well search via the BC Water Resources Atlas: http://srmapps.gov.bc.ca/apps/wrbc/

FIGURES

TABLES

Table 1 - On-Site Historical Review Summary (1 of 1)

370 and 456 Prior Street, Vancouver, BC Le Kiu Holdings Ltd. Project No. 12108-01

Address	Street Directories	Aerial Photographs (AP)	Land Use Maps (LUM)	Fire Insurance Maps (FIM)
	Years Reviewed: 1890, 1895, 1900 ,1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940, 1945, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1991, 1993/94, 1995/96, 1998, and/or 2001	Years Reviewed: 1930, 1949, 1954, 1963, 1970, 1976, 1981, 1986, 1994, 1999 2004, 2009, and 2011	Years Reviewed: 1971, 1980, and 1983	Year Reviewed: 1913, 1930, 1946, and 1956
Prior Street - O	n-Site			
(436)	1925 to 1935 - Grant Smith & Co. & McDonnell Ltd. 1940 to 1945 - F&F Equipment Co logging supplies	1930 - former building on W portion of the Site	1971 - commercial 1980 and 1983 - wholesale & warehouse	1913 - vacant
454	1950 to 1985 - Slade & Stewart - groceries 1991 - Georgia Park Construction Co. 1993/94 - Prior Properties 1995/96 - Slocal Food Importing 1998 to 2001 - Nam Thai International	 1949 to 1954 - W and C portions of the existing building located on the Site; remaining areas paved for parking/loading. Former rail spur located on the S perimeter of the Site. 1963 to 1976 - The existing E portion of the Site building was added; remaining areas paved for parking/loading; former rail spur remained on S perimeter of the Site 		 1930 - "Grant Smith & Co. & McDonnall Ltd." (contractors warehouse) was located in a former building on the W portion of the Site 1956 - "Slade & Stewart" (wholesale produce) was located in the existing building. S portion of the building had offices on second level; two stories of cold storage; and a concrete encased boiler (located on the SW portion of the property); N portion was used for produce wholesale. Rail Spur located on the S perimeter of the Site.
(450)	1910 - Smith & Clark - shingle manufactures	1981 to 2011 - Former rail spur removed from the S perimeter of the Site;		was used for produce wholesale. Trail Spul located on the 3 perimeter of the Site.
456	1991 - Prior Properties 1993/94 to 1995/96 - Yamauchi Joe E K Architect 1993/94 to 1995/96 - Vancouver Ballroom Dance Club 1993/94 to 1995/96 - Straker & Straker - flower wholesale 1995/96 - Slocal Food Importing 1993/94 to 1995/96 - Nam Thai International 1998 - #A Central Valley Food Inc. 2001 - Pacific Enterprises	remaining areas relatively unchanged.		
Malkin Avenue	- On-Site			
550	1993/94 - Pacific Edge Trade Group Canada Ltd. 1993/94 - Pine Trading International Inc import & export 1993/94 to 2001 - Lekiu Importing Co. Ltd. 1995/96 to 1998 - Asian Foods	(same as above)	(same as above)	(same as above)

Notes & Definitions:

N, E, S, W North, East, South, West

С Central

SFR Single Family Residence

m adj Meters Adjacent

Table 2 - Off-Site Historical Review Summary (1 of 2) Operations of Potential Environmental Concern

370 and 456 Prior Street, Vancouver, BC

Le Kiu Holdings Ltd. Project No. 12108-01

Address	Approximate Distance	Street Directories (SD)	Aerial Photographs (AP)	Land Use Maps (LUM)	Fire Insurance Maps (FIM)
		Years Reviewed: 1890, 1895, 1900 ,1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940, 1945, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1991, 1993/94, 1995/96, 1998, and/or 2001	Years Reviewed: 1930, 1949, 1954, 1963, 1970, 1976, 1981, 1986, 1994, 1999, 2004, 2009, and 2011	Years Reviewed: 1971, 1980, and 1983	Year Reviewed: 1913, 1930, 1946, and 1956
Prior Street - Off-Site					
250 (site ID: 6478)	70 m W	1930 to 1950 - Can Junk Co. Ltd. 1940 to 1965 - Atlas and Iron Metals 1970 - Mills Steel Products 1975 - A Action Moving and Storage	1949 to 1963 - outdoor storage yard 1970 to 1999 - former warehouse building 2004 to 2011 - building removed; vacant and vegetated	1971 - manufacturing 1980 and 1983 - wholesale & warehouse	1946 - Atlas Iron and Metals - General Storage 1956 - Canadian Junk - Machinery Storage
(269)	100 m NW	1955 to 1965 - Atlas Iron & Metals (yard)	-	-	1913 and 1946 - SFR
(270)	70 m W	1905 to 1910- Vancouver Stove Works	-	-	-
(298)	70 m W	1910 - Beam Manufacturing	-	-	1956 - "Pipe Racks", "Storage", and "Burner"
310 (site ID: 6477)	adj. W	1930 to 1950 - Great Western Smelting Co. 1955 to 1960 - Canada Metal - Plant No.2 1965 - Wallace Transfer and Storage	1949 to 1954 - outdoor storage yard on E portion; former building on W portion 1963 - outdoor storage yard removed and trucks parked on E portion 1970 to 2011 - former building removed and existing building on E portion	1971 - manufacturing 1980 and 1983 - wholesale & warehouse	1946 - Great West Smelting - wood floors on N portion; concrete floors on S portion; boiler on SE portion 1956 - Great West Smelting
(324)	adj. W	1905 to 1910 - Pacific Box Factory	-	-	-

Notes & Definitions:

N, E, S, W North, East, South, West

C Central

SFR Single Family Residence

m Meters

adj Adjacent

- Pertinent information was not revealed or required

BOLD Property is listed in the MOE Site Registry

Table 2 - Off-Site Historical Review Summary (2 of 2) Operations of Potential Environmental Concern

370 and 456 Prior Street, Vancouver, BC

Le Kiu Holdings Ltd. Project No. 12108-01

Address	Approximate Distance	Street Directories (SD)	Aerial Photographs (AP)	Land Use Maps (LUM)	Fire Insurance Maps (FIM)
		Years Reviewed: 1890, 1895, 1900 ,1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940, 1945, 1950, 1955, 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1991, 1993/94, 1995/96, 1998, and/or 2001	Years Reviewed: 1930, 1949, 1954, 1963, 1970, 1976, 1981, 1986, 1994, 1999, 2004, 2009, and 2011	Years Reviewed: 1971, 1980, and 1983	Year Reviewed: 1913, 1930, 1946, and 1956
Prior Street - Off-Site (C	ontinued)				
408 (410)	adj W of 456 Prior Street	1910 - City Fuel Co. 1945 to 1950 - Atlas Iron (yard)	1930 to 2011 - Vacant	1971 - commercial 1980 and 1983 - parking	-
413	20 m N	1955 - Service Auto Wreckers - storage 1955 - Empress Garage 1960 - Central Auto Body 1965 - Wallace Service - auto garage	1949 to 1976 - former building on N portion 1981 - former building removed; vacant 1986 to 2011 - existing SFR	1971 - manufacturing 1980 - vacant 1983 - residential	-
(480) 496	adj E	1925 - Great West Cartage 1935 to 1965 - Ault & Wiborg - ink manufacturers	1949 to 2011 - existing commercial/industrial building	1971 - commercial 1980 and 1983 - wholesale & warehouse	1913 - Herondale Farm - Bone Crushing 1930 - Junk Storage and Stable 1956 - Printers Ink Manufacturing
South of the Site - Off-S	ite				
1002 Station Street (site ID: 1100)	adj S	1920 to 1955 - various railway stations and rail yards	1930 to 1963 - former rail yards 1970 to 1986 - three former buildings located approximately 10 m S of the Site (with two additional outbuildings). 1994 to 2004 - rail yard and associated buildings removed; vacant and partially vegetated	1971, 1980, and 19803 - various rail yards	1930 - Northern Pacific Railway Freight Shed. Oil stored in barrels, approximately 60 m SW of the Site. 1946 - Repair and Machine Shops associated with "Finning Tractor and Equipment" approx. 60
(580 Malkin) (site ID: 12143)	20 m SE		2009 - former buildings located on NW portion (currently Trillium Park) 2011 - vacant and under construction (buildings removed from Trillium Park)		m SW of the Site; portions of the repair shop are indicated to have had wood floors. 1956 - Repair and Machine Shops associated with "Finning Tractor and Equipment" approx. 60 m SW; "oil storage" shed approx. 100 m SW of the Site; and machine storage approximately 30 m SW of the Site.

Notes & Definitions:

N, E, S, W North, East, South, West

C Central

SFR Single Family Residence

m Meters

adj Adjacent

- Pertinent information was not revealed or required

BOLD Property is listed in the MOE Site Registry

Table 3 - Areas of Potential Environmental Concern (1 of 2)

370 and 456 Prior Street, Vancouver, BC

Le Kiu Holdings Ltd. Project No. 12108-01

Address	Approximate Distance	Operation of Potential Concern	APEC Potential	Rationale
Prior Street - Off-Site				
250 (site ID: 6478)	70 m W	1930 to 1950 - Can Junk Co. Ltd. 1940 to 1965 - Atlas and Iron Metals 1956 - Canadian Junk - Machinery Storage 1970 - Mills Steel Products 1971 - manufacturing (LUM) 1975 - A Action Moving and Storage	Low	Based on the cross to down-gradient distance from the Site, there is considered to be a low potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.
(269)	100 m NW	1955 to 1965 - Atlas Iron & Metals (yard)	Low	Based on the cross-gradient distance from the Site, there is considered to be a low potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.
(270)	70 m W	1905 to 1910 - Vancouver Stove Works	Low	Based on the duration since the former operations has ceased and the cross to down-gradient distance from the Site, there is considered to be a low potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.
(298)	70 m W	1910 - Beam Manufacturing 1956 - "Pipe Racks", "Storage", and "Burner"	Low	Based on the duration since the former operations has ceased and the cross to down-gradient distance from the Site, there is considered to be a low potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.
310 (site ID: 6477)	adj. W	1930 to 1950 - Great Western Smelting Co. 1946 - Great West Smelting - wood floors on N portion; concrete floors on S portion; boiler on SE portion 1955 to 1960 - Canada Metal - Plant No.2 1965 - Wallace Transfer and Storage	Potential	The property is listed in the MOE Site Registry as "Active – Under Remediation"; however, further activities were not reported for the property. Based on the adjacent proximity to the Site and the duration of the former smelting operations, there is considered to be a moderate potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.
(324)	adj. W	1905 to 1910 - Pacific Box Factory	Low	Based on the duration since the former operations has ceased, there is considered to be a low potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.

Notes & Definitions:

N, E, S, W North, East, South, West

C Central adj Adjacent m Meters

APEC Area of Potential Environmental Concern

BOLD Property is listed in the MOE Site Registry

CofC Certificate of Compliance
CSR Contaminated Site Regulation
ESA Enviornmental Site Assessment
FIM Fire Insurance Map (Table 2)

GW Groundwater
LUM Land Use Map (Table 2)
MOE Ministry of Environment
NOIR Noticie of Independent Remediation

SFR Single Family Residence

- Pertinent information was not revealed or required

Table 3 - Areas of Potential Environmental Concern (2 of 2)

370 and 456 Prior Street, Vancouver, BC Le Kiu Holdings Ltd.

Project No. 12108-01

Address	Approximate Distance	Operation of Potential Concern	APEC Potential	Rationale
or Street - Off-Site (Continued)			
408 (410)	adj W of 456 Prior Street	1910 - City Fuel Co. 1945 to 1950 - Atlas Iron (yard)*	Low	Aerial photographs show that the property has been vacant since the 1930s; therefore, there is considered to be a low potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards
413	20 m N	1955 - Service Auto Wreckers - storage 1955 - Empress Garage 1960 - Central Auto Body 1965 - Wallace Service - auto garage	Low	A former building was located on the N portion of the property, approx. 40 m N of the Site, from the 1940s to the 1970s. In the 1980s the property was vacant and then redeveloped with the existing SFR. Based on the cross-gradient distance of the former building to the Site and the redevelopment of the property, there is considered to be a low potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.
(480) 496	adj E	1925 - Great West Cartage 1930 - Junk Storage and Stable (FIM) 1935 to 1965 - Ault & Wiborg - ink manufacturers 1956 - Printers Ink Manufacturing (FIM)	Potential	Aerial photographs show that the existing building has been located adjacent to the E of the Site since the 1930s. The building was occupied by an ink manufacturer from the mid-1930s to the late 1960s. Given that the property has not been redeveloped and that it is located adjacent and up-gradient to the Site, there is considered to be a moderate potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards.
th of the Site - Off-	Site			
Station Street site ID	adj S	1920 to 1955 - various railway stations and rail yards 1930 - Northern pacific Railway Freight Shed. Oil stored in barrels, approximately 60 m SW of the Site.	Potential	
		404C Dengis and Machine Chang associated with "Finning		
		 1946 - Repair and Machine Shops associated with "Finning Tractor and Equipment" approx. 60 m SW of the Site; portions of the repair shop are indicated to have had wood floors. 1956 - Repair and Machine Shops associated with "Finning Tractor and Equipment" approx. 60 m SW; "oil storage" shed approx. 100 m SW of the Site; and machine storage approximately 30 m SW of the Site. 		FIMs and APs show various repair and machine shops were located to the southwest of the Site from the 1930s, or earlier, to the 1980s. In addition, APs show three former buildings located approximately 10 m south of the Site, from the early 1970s to the late 1980s. The property is listed in the MOE Site Registry as "Active - Under Remediation". The property was classified as non-high ris and a NOIR completion was submitted in November 2011. Based on the adjacent proximity to the Site, the unknown details of the investigations conducted on the property, and that the property has not been redeveloped, there is considered to be a potential for constituents of concern to be present in the Site soil, groundwater, and/or vapour at concentrations greater than the CSR standards

^{*} Aerial photographs show that the property has been vacant since the 1930s; therefore, it is anticipated that this listing was associated with 250 Prior Street (which was occupied by Atlas and Iron Metals from 1940 to 1965).

Notes & Definitions:

N, E, S, W North, East, South, West

C Central Adjacent

adj m Meters

APEC Area of Potential Envionmental Concern Property is listed in the MOE Site Registry BOLD

Certificate of Compliance Contaminated Site Regulation CofC CSR ESA Envionmental Site Assessment FIM GW Fire Insurance Map (Table 2)

Groundwater

LUM Land Use Map (Table 2) MOE Ministry of Environment

NOIR Noticie of Independent Remediation

SFR Single Family Residence

Pertinent information was not revealed or required

APPENDIX A PHOTOGRAPHIC DOCUMENTATION

Photograph 1: The east portion of 456 Prior Street (looking west from Malkin Road)

Photograph 2: The south portion of 456 Prior Street (looking northwest from 580 Malkin Street)

Photograph 3: The former propane fuelling station on the northeast portion of 456 Prior Street (looking northeast)

Photograph 4: The north portion of 456 Prior Street (looking west)

Photograph 5: The portion of the Site at 370 Prior Street (looking north)

Photograph 6: The west portion of 456 Prior Street (looking northeast)

Photograph 7: The concrete pad on the northwest portion of 456 Prior Street (looking south)

Photograph 8: A cut-off metal pipe observed on the northwest portion of 456 Prior Street (looking south)

APPENDIX B CURRENT LAND TITLE

TITLE SEARCH PRINT 2014-05-21, 14:55:23

Requestor: jrestiaux Folio/File Reference:

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Land Title District VANCOUVER
Land Title Office VANCOUVER

Title NumberFrom Title Number

BB1117482

BX100203

Application Received 2009-11-03

Application Entered 2009-11-07

Registered Owner in Fee Simple

Registered Owner/Mailing Address: LEKIU HOLDINGS LTD., INC.NO. 865077

450 PRIOR STREET VANCOUVER, BC

V6A 2E5

Taxation Authority CITY OF VANCOUVER

Description of Land

Parcel Identifier: 010-292-187

Legal Description:

LOT A BLOCKS 2 TO 7, 9 AND 20 DISTRICT LOTS 181, 196 AND 2037 PLAN 7989

Legal Notations

NOTICE OF INTEREST, BUILDERS LIEN ACT (S.3(2)), SEE BM92449

FILED 1998-03-30

Charges, Liens and Interests

Nature: EASEMENT Registration Number: 15517M

Registration Date and Time: 1939-11-28 14:06
Registered Owner: CITY OF VANCOUVER

Remarks: SEE SKETCH ANNEXED INTER ALIA

Nature: EASEMENT AND INDEMNITY AGREEMENT

Registration Number: 106415M

Registration Date and Time: 1949-04-12 10:28
Registered Owner: CITY OF VANCOUVER

TITLE SEARCH PRINT 2014-05-21, 14:55:23

Requestor: jrestiaux Folio/File Reference:

Nature: LEASE Registration Number: 112293M

Registration Date and Time: 1949-08-25 10:50

Registered Owner: SLADE & STEWART LTD. INCORPORATION NO. 378818

CEE DE CD22002

SEE DF GD32992

Remarks: LEASE FOR 25 YEARS INTER ALIA

ASSIGNED TO BE341229

Nature: LEASE Registration Number: BE341229

Registration Date and Time: 1991-12-10 09:37 Registered Owner: 401684 B.C. LTD.

INCORPORATION NO. 401684

Remarks: ASSIGNMENT OF 112293M REC'D 25/08/1949 @ 10:50

INTER ALIA

Nature: MORTGAGE Registration Number: BG316870

Registration Date and Time: 1993-09-01 14:28

Registered Owner: HONGKONG BANK OF CANADA

Remarks: ITER ALIA

Nature: ASSIGNMENT OF RENTS

Registration Number: BG316871

Registration Date and Time: 1993-09-01 14:28

Registered Owner: HONGKONG BANK OF CANADA

Remarks: SEE BG316870

INTER ALIA

Nature: ASSIGNMENT OF RENTS

Registration Number: BG316871A Registration Date and Time: 1993-09-01 14:28

Registered Owner: HONGKONG BANK OF CANADA

Remarks: INTER ALIA

Nature: PRIORITY AGREEMENT

Registration Number: BH312347

Registration Date and Time: 1994-08-24 09:32

Remarks: GRANTING BG316870 PRIORITY OVER

112293M AND BE341229

INTER ALIA

TITLE SEARCH PRINT 2014-05-21, 14:55:23

Requestor: jrestiaux Folio/File Reference:

Nature: PRIORITY AGREEMENT

Registration Number: BH312348

Registration Date and Time: 1994-08-24 09:32

Remarks: GRANTING BG316871 PRIORITY OVER

112293M AND BE341229

INTER ALIA

Duplicate Indefeasible TitleNONE OUTSTANDING

Transfers NONE

Pending Applications NONE

TITLE SEARCH PRINT 2014-05-21, 14:51:12

Requestor: jrestiaux Folio/File Reference:

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Land Title District VANCOUVER
Land Title Office VANCOUVER

Title NumberFrom Title Number
BB1117483
BX100204

Application Received 2009-11-03

Application Entered 2009-11-07

Registered Owner in Fee Simple

Registered Owner/Mailing Address: LEKIU HOLDINGS LTD., INC.NO. 865077

450 PRIOR STREET VANCOUVER, BC

V6A 2E5

Taxation Authority CITY OF VANCOUVER

Description of Land

Parcel Identifier: 010-292-209

Legal Description:

LOT B BLOCKS 2 TO 7, 9 AND 20 DISTRICT LOTS 181, 196 AND 2037 PLAN 7989

Legal Notations

NOTICE OF INTEREST, BUILDERS LIEN ACT (S.3(2)), SEE BM92450

FILED 1998-03-30

Charges, Liens and Interests

Nature: LEASE Registration Number: 112293M

Registration Date and Time: 1949-08-25 10:50

Registered Owner: SLADE & STEWART LTD.

INCORPORATION NO. 378818

SEE DF GD32992

Remarks: LEASE FOR 25 YEARS INTER ALIA

ASSIGNED TO BE341229

Nature: EASEMENT AND INDEMNITY AGREEMENT

Registration Number: 301095M

Registration Date and Time: 1959-11-02 14:18
Registered Owner: CITY OF VANCOUVER

TITLE SEARCH PRINT 2014-05-21, 14:51:12

Requestor: jrestiaux Folio/File Reference:

Nature: SUB LEASE Registration Number: N2307

Registration Date and Time: 1985-01-11 14:32

Registered Owner: LEKIU IMPORTING CO. LTD. INCORPORATION NO. 27384

Remarks: LEASE OF LEASE PART SHOWN OUTLINED RED ON SKETCH

PLAN ANNEXED SUB-LEASE OF LEASE 112293M WITH RIGHT

OF RENEWAL

Nature: RIGHT OF FIRST REFUSAL

Registration Number: N2308

Registration Date and Time: 1985-01-11 14:32

Registered Owner: LEKIU IMPORTING CO. LTD. INCORPORATION NO. 27384

TO LEACE CEE M2207

Remarks: TO LEASE, SEE N2307

Nature: MORTGAGE Registration Number: N37824

Registration Date and Time: 1985-05-22 13:05

Registered Owner: BANK OF BRITISH COLUMBIA Remarks: MORTGAGE OF LEASE N2307

Nature: LEASE Registration Number: BE341229

Registration Date and Time: 1991-12-10 09:37 Registered Owner: 401684 B.C. LTD.

INCORPORATION NO. 401684

Remarks: ASSIGNMENT OF 112293M REC'D 25/08/1949 @ 10:50

INTER ALIA

Nature: MORTGAGE Registration Number: BG316870

Registration Date and Time: 1993-09-01 14:28

Registered Owner: HONGKONG BANK OF CANADA

Remarks: ITER ALIA

Nature: ASSIGNMENT OF RENTS

Registration Number: BG316871

Registration Date and Time: 1993-09-01 14:28

Registered Owner: HONGKONG BANK OF CANADA

Remarks: SEE BG316870

INTER ALIA

TITLE SEARCH PRINT 2014-05-21, 14:51:12

Requestor: jrestiaux Folio/File Reference:

Nature: ASSIGNMENT OF RENTS

Registration Number: BG316871A

Registration Date and Time: 1993-09-01 14:28

Registered Owner: HONGKONG BANK OF CANADA

Remarks: INTER ALIA

Nature: PRIORITY AGREEMENT

Registration Number: BH312347

Registration Date and Time: 1994-08-24 09:32

Remarks: GRANTING BG316870 PRIORITY OVER

112293M AND BE341229

INTER ALIA

Nature: PRIORITY AGREEMENT

Registration Number: BH312348

Registration Date and Time: 1994-08-24 09:32

Remarks: GRANTING BG316871 PRIORITY OVER

112293M AND BE341229

INTER ALIA

Duplicate Indefeasible TitleNONE OUTSTANDING

Transfers NONE

Pending Applications NONE

APPENDIX C

MINISTRY OF ENVIRONMENT SITE REGISTRY SEARCH RESULTS

Si teRegSearchLat49Long123. txt

As Of: MAY 04,	2014 For:	BC Online: Site Registry 14/05/09 PB64131 KEYSTONE ENVIRONMENTAL LTD. 11:52:11
Folio: 12108 46 records se		Page 1 0.5 km from latitude 49 deg, 16 min, 34.6 sec
and Longi t	tude 123 deg	, 5 min, 41.3 sec
Si te I d 0000027	Lastupd 12SEP19	Address / Ci ty 140 KEEFER STREET VANCOUVER
0000046	10N0V11	941 MAIN STREET VANCOUVER
0000247	10JAN07	1130 STATION STREET VANCOUVER
0000275	05JAN25	960, 980, 1002, 1004, 1006 MAIN STREET VANCOUVER
0000285	02APR19	315 TERMI NAL AVENUE VANCOUVER
0000439	12JAN27	MAIN STREET AND QUEBEC STREET VANCOUVER
0000844	03JUL04	601& 615 TERMI NAL AVENUE VANCOUVER
0001100	14APR05	1002 STATION STREET (FORMERLY) VANCOUVER
0001172	14MARO3	721 MAIN STREET / 133 UNION STREET VANCOUVER
0001457	04JAN20	375 TERMI NAL AVENUE VANCOUVER
0003652	030CT17	1088 QUEBEC STREET VANCOUVER
0004401	030CT09	679 EAST GEORGIA STREET VANCOUVER
0004421	02MAY23	288 EAST GEORGI A VANCOUVER
0005589	030CT10	1500 MAIN STREET VANCOUVER
0005915	13DEC23	125 MILROSS AVENUE, FORMER 939 MAIN STREET VANCOUVER
0006477	13MAR27	310 PRI OR STREET VANCOUVER
0006478	13MAR27	250 PRI OR STREET VANCOUVER
0006494	10N0V18	1405 THORNTON STREET VANCOUVER
0006495	09APR23	1465 THORNTON STREET VANCOUVER
0007240	O4MARO8	946-948 MAIN STREET VANCOUVER
0007402	01AUG29	295 TERMI NAL AVENUE VANCOUVER
0007732	030CT30	941 MAIN STREET VANCOUVER
0008016	04APR19	227 EAST GEORGIA STREET VANCOUVER
0008222	04N0V02	910-914 MAIN STREET VANCOUVER
0008392	13NOV12	906 MAIN STREET VANCOUVER

Si teRegSearchLat49Long123. txt

As Of: MAY 04, 2014	BC Onl	ine: Site Regi KEYSTONE ENVII	Stry	14/05/09 11: 52: 11
Folio: 12108				Page 2
46 records selected	for 0.5 km fr 3 dea 5 min	om latitude 4º 41 3 sec	9 deg, 16 mir	ı, 34.6 sec
and Longitude 12 Site Id Las	tupd Address	/ City		
0008406 04F	EB25 708 EAS1	T GEORGIA STREI	ĒΤ	
0009073 13F	VANCOUVE EB08 105 KEEF VANCOUVE	ER STREET AND	544 COLUMBIA	STREET
0009216 05M		ONAL AVENUE		
0009280		N STREET		
0009958		N STREET		
0010105 13D		MAIN STREET		
0010228 09J		I, 718 AND 720	MAIN STREET	
0010387 10N		620 EVANS AVE	NUE	
0010388 09J	ANO9 530 EVAN	IS AVENUE		
0010773 09J		NINAL AVE.		
0010775		N STREET		
0010978		ER STREET		
0011478 09A		AVENUE NEAR N	MAIN STREET	
0012143 11J		(IN AVENUE		
0013964		GEORGIA STREI	ĒΤ	
0014582 12D		ER STREET		
0014584 12D		ER STREET (BE	TWEEN KEEFER S	ST & BACK LANE)
0014587 12D		BEHIND 253 KEI	EFER STREET	
0015528 13N		ENT AREA NORTH	OF 721 MAIN S	STREET
0015652		PENDER STREET	Γ	
0016120	VANCOUVE PRI OR ST VANCOUVE	REET ADJACENT	125 MI LROSS A	AVENUE

Si teRegDetai | Si tel D1100Lat49Long123. txt

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 16

Folio: 12108 Page

Detail Report

SITE LOCATION Latitude: 49d 16m 30.9s Site ID: 1100

Victoria File: 26250-20/0761 Regional File: 26250-20/0275 Longi tude: 123d 05m 47.8s

Region: SURREY, LOWER MAINLAND

Si te Address: 1002 STATION STREET (FORMERLY)

FALSE CREEK INDUSTRIAL LANDS

City: VANCOUVER Prov/State: BC

Postal Code:

Registered: OCT 09, 1997 Updated: APR 05, 2014 Detail Removed: APR 05, 2014

31 23 Parti ci pants: Associated Sites: Notations: Documents: 21 Susp. Land Use: 6 Parcel Descriptions:

Location Description: BURLINGTON NORTHERN RAILROAD (BNR) WITHIN EAST FALSE CREEK INDUSTRIAL LANDS. LOTS A, B, C, D, E, G, & H OF N YARD. DERIVED BY BC ENVIRONMENT REFERENCING RECTIFIED NAD 83 LOCATI ON ORTHOPHOTOGRAPHY-10/28/96(LOCATION CONFIRMED USING ICIS ON 2011/11/24)

Record Status: ACTIVE - UNDER REMEDIATION

Fee category: LARGE SITE, COMPLEX CONTAMINATION

NOTATI ONS

Notation Type: SITE RISK CLASSIFIED - SITE IS NON-HIGH RISK Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: MAR 27, 2013 Approved:

Approved: MAR 27, 2013

Ministry Contact: O'GRADY, TYLER

Notation Participants Notation Roles GOLDER ASSOCIATES SUBMITTED BY

Note: NON-HIGH RISK PARCEL IS 1100 STATION STREET, VANCOUVER.

Notation Type: NOTICE OF INDEPENDENT REMEDIATION INITIATION SUBMITTED Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL

Initiated: NOV 21, 2011 Approved: NOV 21, 2011

Ministry Contact: SAMWAYS, JENNIFER

Notation Participants Notation Roles GOLDER ASSOCIATES SUBMITTED BY

Note: START: 2010-04-08

Notation Type: NOTICE OF INDEPENDENT REMEDIATION COMPLETION SUBMITTED

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL

Approved: NOV 21, 2011 Initiated: NOV 21, 2011

Si teRegDetai | Si tel D1100Lat49Long123. txt

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09

13: 44: 16 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. Page Folio: 12108

NOTATI ONS

Ministry Contact: SAMWAYS, JENNIFER

Notation Participants Notation Roles GOLDER ASSOCIATES SUBMITTED BY

Note: COMPLETED: 2010-04-14

Notation Type: MONITORING REPORT SUBMITTED

Notation Class: ADMINISTRATIVE

Initiated: OCT 31, 2011 Approved: 0CT 31, 2011

Ministry Contact: WALTON, DOUG G

Notation Participants Notation Roles GOLDER ASSOCIATES SUBMITTED BY

Note: REPORT RECEIVED 2011-10-31. REPORT (DATED 2011-10-25) SUBMITTED IN CONJUNCTION WITH APPROVAL IN PRINCIPLE ISSUED 1999-07-26. REPORT INCLUDES SITES 1100, 6478 & 6477. REPORT FILED IN SITE 1100 FILE.

Notation Type: MONITORING REPORT SUBMITTED

Notation Class: ADMINISTRATIVE

Initiated: SEP 07, 2010 Approved: SEP 07, 2010

Ministry Contact: HACKINEN, COLEEN (SURREY)

Notation Participants Notation Roles GOLDER ASSOCIATE'S LTD (BURNABY) SUBMITTED BY

Note: REPORT RECEIVED 2010-10-29. REPORT (DATED 2010-09-07) SUBMITTED IN CONJUNCTION WITH APPROVAL IN PRINCIPLE ISSUED 26 JULY 1999. REPORT INCLUDES SITES 1100, 6478 & 6477. REPORT FILED IN SITE 1100 FILE.

Notation Type: MONITORING REPORT SUBMITTED Notation Class: ADMINISTRATIVE

Initiated: OCT 13, 2009 Approved: 0CT 13, 2009

Ministry Contact: HEWLETT, LUCY

Notation Participants Notation Roles GOLDER ASSOCIATES LTD (BURNABY) SUBMITTED BY

Note: REPORT (DATED 06 OCTOBER 2009) SUBMITTED IN CONJUNCTION WITH APPROVAL IN PRINCIPLE ISSUED 26 JULY 1999. REPORT INCLUDES SITES 1100, 6478 & 6477. REPORT FILED IN SITE 1100 FILE.

Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: JUL 26, 1999

Approved: JUL 26, 1999

Page 2

Si teRegDetai I Si tel D1100Lat49Long123. txt

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13:44:16 Folio: 12108 Page NOTATI ONS Ministry Contact: HACKINEN, COLEEN (SURREY) Note: ANNUAL GROUNDWATER MONITORING REPORT - SITES 1100, 6477 & 6478 INCLUDED IN SAME REPORT. Required Actions: SCHEDULE B CONDITION 1 Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: JUL 26, 1999 Approved: JUL 26, 1999 Ministry Contact: WALTON, DOUG G Note: ANNUAL GROUNDWATER MONITORING REPORT - SITES 1100, 6477 & 6478 INCLUDED IN SAME REPORT. Required Actions: SCHEDULE B, CONDITION 1 - "THE GROUNDWATER AND SOILS MANAGEMENT PLAN, DESCRIBED IN REMEDIATION PLAN, FREIGHTHOUSE LANDS, VANCOUVER, B.C. ADDENDUM NO. 2, GOLDER ASSOCIATES LTD., JULY 12, 1999, WILL BE IMPLEMENTED BY A QUALIFIED ENVIRONMENTAL CONSULTANT." Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: JUL 26, 1999 Approved: JUL 26, 1999 Approved: JUL 26, 1999 Ministry Contact: HACKINEN, COLEEN (SURREY) Note: ANNUAL GROUNDWATER MONITORING REPORT - SITES 1100, 6477 & 6478 INCLUDED IN SAME REPORT. Required Actions: SCHEDULE B, CONDITION 1 -"THE GROUNDWATER AND SOILS MANAGEMENT PLAN, DESCRIBED IN REMEDIATION PLAN, FREIGHTHOUSE LANDS, VANCOUVER, B.C. ADDENDUM NO. 2, GOLDER ASSOCIATES LTD., JULY 12, 1999, WILL BE IMPLEMENTED BY A QUALIFIED ENVIRONMENTAL CONSULTANT." Notation Type: APPROVAL IN PRINCIPLE ISSUED Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: JUL 26, 1999 Approved: JUL 26, 1999 Ministry Contact: EVANS, PEGGY L Notation Participants Notation Roles WALTON, DOUG G I SSUED BY Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE Notation Class: ENVIRONMENTÀL MANAGEMENT ACT: GENERAL Initiated: JUL 26, 1999 Approved: JUL 26, 1999 Page 3

Si teRegDetai I Si tel D1100Lat49Long123. txt

Ministry Contact: HACKINEN, COLEEN (SURREY)

Note: ANNUAL GROUNDWATER MONITORING REPORT - SITES 1100, 6477 & 6478 INCLUDED

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09
For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 16
Page 4

Folio: 12108 NOTATIONS

IN SAME REPORT.

Required Actions: SCHEDULE B, CONDITION 1 -"THE GROUNDWATER AND SOILS MANAGEMENT PLAN, DESCRIBED IN REMEDIATION PLAN, FREIGHTHOUSE LANDS, VANCOUVER, B.C. ADDENDUM NO. 2, GOLDER ASSOCIATES LTD., JULY 12, 1999, WILL BE IMPLEMENTED BY A QUALIFIED ENVIRONMENTAL CONSULTANT."

Notation Type: HISTORICAL SITE NOTIFICATION ISSUED (WMA 26.3(3))
Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS
Initiated: AUG 18, 1997
Approved:

Ministry Contact: MCLENEHAN, ROBERT E (MELP)

Notation Type: APPROVAL IN PRINCIPLE ISSUED
Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS

Initiated: FEB 28, 1997 Approved: FEB 28, 1997

Ministry Contact: WARD, JOHN E H

Notation Participants
WARD, JOHN E H
Notation Roles
I SSUED BY

Note: SUBJECT TO NINE CONDITIONS LISTED IN THE APPROVAL IN PRINCIPLE

Notation Type: RISK ASSESSMENT ACCEPTED

Notation Class: ADMINISTRATIVE

Initiated: SEP 13, 1996 Approved: SEP 13, 1996

Ministry Contact: MACFARLANE, MIKE W

Notation Participants
IBI GROUP ASSOCIATE PARTNERS LTD. (VANCOUVER, SUBMITTED BY B. C.)

GOLDER ASSOCIATES LTD (BURNABY) I SSUED BY

Note: RISK ASSESSMENT ACCEPTED - ADENDUM SUBMITTED AND APPROVED.

Required Actions: ISSUE APPROVAL IN PRINCIPAL WITH CONDITIONS: SPECIAL WASTE REDUCTION PLAN, HEALTH AND SAFETY PLAN, ONGOING MONITORING

Notation Type: REMEDIAL PLAN SUBMITTED WITH RISK ASSESSMENT: INTERNAL REVIEW

Notation Class: WASTE MANAGEMENT ACT: FEE REGULATION S.35(2)
Initiated: JUL 31, 1996
Approved: JUL 31, 1996

Page 4

Si teRegDetai | Si tel D1100Lat49Long123. txt

Ministry Contact: MCLENEHAN, ROBERT E (MELP)

Note: CHEQUE FOR \$32,742 RECEIVED ON AUGUST 28/96. COVERS RESUBMISSION OF DETAILED SITE ASSESSMENT, REMEDIATON PLAN WITH RISK ASSESMENT & APPROVAL IN PRI NCI PAL.

Required Actions: REVIEW BY L. JOHNASSON AND M. MACFARLANE BY END OF SEPT/96.

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 16 Folio: 12108 Page NOTATI ONS

Notation Type: REMEDIATION PLAN REPORT ACCEPTED

Notation Class: ADMINISTRATIVE Initiated: NOV 02, 1994

Approved: NOV 02, 1994

Ministry Contact: MCLENEHAN, ROBERT E (MELP)

Notation Participants Notation Roles EAST FALSE CREEK HOLDING COMPANY LTD. REQUESTED BY

Note: FOR LOT A ONLY.

Notation Type: REMEDIATION PLAN REPORT SUBMITTED Notation Class: ADMINISTRATIVE

Initiated: MAY 24, 1994 Approved: MAY 24, 1994

Ministry Contact: POPE, DOUGLAS

Notation Participants Notation Roles GOLDER ASSOCIATE'S LTD (BURNABY) SUBMITTED BY EAST FALSE CREEK HOLDING COMPANY LTD. REQUESTED BY

Note: FOR LOT A ONLY. REMEDIATION PLAN AND SOIL AND WATER MANAGEMENT PROCEDURES FOR THE FORMER BNR STATION STREET SITE, VANCOUVER, B.C.

Notation Type: CONCENTRATION CRITERIA APPROACH USED Notation Class: ADMINISTRATIVE

Initiated: MAY 24, 1994 Approved: MAY 24, 1994

Ministry Contact: POPE, DOUGLAS

Note: FOR LOT A ONLY

Notation Type: LAND TITLE COVENANT REGISTERED Notation Class: ADMINISTRATIVE Initiated: DEC 29, 1993 Approved: DEC 29, 1993

Ministry Contact: MCLENEHAN, ROBERT E (MELP)

Note: FOR LOT A ONLY. MISSING

Si teRegDetai | Si tel D1100Lat49Long123. txt

Notation Type: SITE INVESTIGATION REPORT SUBMITTED
Notation Class: ADMINISTRATIVE
Initiated: APR 01, 1993

Approved: APR 01, 1993

Ministry Contact: MCLENEHAN, ROBERT E (MELP)

Notation Participants
MTR CONSULTANTS LTD. (VANCOUVER, B.C.) Notation Roles SUBMITTED BY GLACIER PARK COMPANY (SEATTLE, WASH.) REQUESTED BY

BC Online: Site Registry
For: PB64131 KEYSTONE ENVIRONMENTAL LTD. As of: MAY 04, 2014 14-05-09 13: 44: 16

Folio: 12108 Page 6

NOTATI ONS

Notation Type: SITE INVESTIGATION REPORT ACCEPTED Notation Class: ADMINISTRATIVE

Initiated: MAY 22, 1992 Approved: MAY 22, 1992

Ministry Contact: MCLENEHAN, ROBERT E (MELP)

Notation Participants Notation Roles GLACIER PARK COMPANY (SEATTLE, WASH.) RECEIVED BY

Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE

Initiated: MAY 12, 1992 Approved: MAY 12, 1992

Ministry Contact: OUELLET, LOUISE (MINISTRY)

Notation Participants Notation Roles MTR CONSULTANTS LTD. (VANCOUVER, B.C.)
GLACIER PARK COMPANY (SEATTLE, WASH.) SUBMITTED BY REQUESTED BY

Notation Type: SITE INVESTIGATION REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: DEC 18, 1989

Approved: DEC 18, 1989

Ministry Contact: WIENS, JOHN H (MELP)

Notation Participants Notation Roles MTR CONSULTANTS LTD. (VANCOUVER, B.C.) SUBMITTED BY GLACIER PARK COMPANY (SEATTLE, WASH.) REQUESTED BY

Note: PRELIMINARY ENVIRONMENTAL ASSESSMENT BURLINGTON NORTHERN RAILYARD,

VANCOUVER, B. C.

SITE PARTICIPANTS

Participant: ANALYTICAL SERVICE LABORATORIES LTD (VANCOUVER)

Role(s): ANALYTICAL LAB

Start Date: APR 26, 1989 End Date:

Page 6

Si teRegDetailSi tel D1100Lat49Long123.txt

Participant: CANTEST LIMITED (VANCOUVER)
Role(s): ANALYTICAL LAB
Start Date: SEP 27, 1991 End Date:

Participant: CASTOR CONSULTANTS LTD. (COQUITLAM, B.C.)
Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR
Start Date: APR 24, 1989 End Date:

Participant: CITY OF VANCOUVER, PERMITS & LIC. DEPT. (VANCOUVER)
Role(s): MUNICIPAL/REGIONAL CONTACT
Start Date: SEP 13, 1993 End Date:

Participant: EAST FALSE CREEK HOLDING COMPANY LTD.

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 16 Folio: 12108 Page SITE PARTICIPANTS Role(s): PROPERTY OWNER Start Date: DEC 29, 1993 End Date: Participant: EMPIRE RECYCLING LTD (VANCOUVER)
Role(s): POTENTIALLY AFFECTED PARTY
Start Date: JAN 01, 1986
Notes: HISTORICAL START DATE End Date: Participant: ENVIROCHEM SERVICES (NORTH VANCOUVER)
Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR
Start Date: DEC 09, 1991 End Date: _ _ _ _ _ _ _ _ _ _ _ Participant: ERM-CANADA INC. (VANCOUVER)
ROIe(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR
Start Date: APR 24, 1989 End Date: Participant: EVANS, PEGGY L
Role(s): ALTERNATE MINISTRY CONTACT
Start Date: JUL 26, 1999 End Date: Participant: GLACIER PARK COMPANY (SEATTLE, WASH.) Role(s): FORMER OPERATOR FORMER PROPERTY OWNER Start Date: APR 24, 1989 End Date: APR 06, 1993 Participant: GOLDER ASSOCIATES
ROLe(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR
Start Date: OCT 25, 2011 End Date: Participant: GOLDER ASSOCIATES LTD Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: MAR 02, 2007 End Date: Participant: GOLDER ASSOCIATES LTD (BURNABY) Role(s): ENVIRONMENTAL CONSULTANT/CONTRÁCTOR

Page 7

Start Date:	Si teRegDetailSi telD1100Lat49Long AUG 01, 1993	123.txt End Date:
Start Date:	GREAT WEST SMELTING CO. POTENTIALLY AFFECTED PARTY JAN 01, 1956 HISTORICAL START DATE	End Date:
Role(s):	HACKINEN, COLEEN (SURREY) ALTERNATE MINISTRY CONTACT JUL 26, 1999	End Date:
Role(s):	HEWLETT, LUCY ALTERNATE MINISTRY CONTACT OCT 13, 2009	End Date:
Parti ci pant:	IBI GROUP ASSOCIATE PARTNERS LTD. (VAN	COUVER, B. C.)

As of: MAY 04, Folio: 12108 SITE PARTICIPAN	2014 BC Online: Site Registry For: PB64131 KEYSTONE ENVIRONMENTS	NTAL LTD.	14-05-09 13: 44: 16 Page 8
Role(s): Start Date:	ENVIRONMENTAL CONSULTANT/CONTRACTOR SEP 13, 1993	End Date:	
Role(s):	MACFARLANE, MIKE W ALTERNATE MINISTRY CONTACT SEP 13, 1996	End Date:	
Role(s): Start Date:	MACKENZIE AND FEIMANN LTD. (VANCOUVER) POTENTIALLY AFFECTED PARTY JAN 01, 1958 HISTORICAL START DATE	End Date:	
Role(s):	MCLENEHAN, ROBERT E (MELP) MAIN MINISTRY CONTACT MAY 12, 1992	End Date:	DEC 24, 1999
Participant: Role(s): Start Date:	MTR CONSULTANTS LTD. (VANCOUVER, B.C.) ENVIRONMENTAL CONSULTANT/CONTRACTOR APR 24, 1989	End Date:	
Parti ci pant: Rol e(s): Start Date:	OUELLET, LOUISE (MINISTRY) ALTERNATE MINISTRY CONTACT DEC 28, 1989	End Date:	SEP 30, 1993
Role(s):	PITEAU KOMEX ENVIRONMENTAL (NORTH VANC ENVIRONMENTAL CONSULTANT/CONTRACTOR APR 24, 1989	OUVER) End Date:	
Role(s):	POPE, DOUGLAS ALTERNATE MINISTRY CONTACT MAY 24, 1994	End Date:	MAY 21, 2002
	Dago 0		_

Si teRegDetailSi tel D1100Lat49Long123.txt
Participant: SAMWAYS, JENNIFER
ROIe(s): ALTERNATE MINISTRY CONTACT
Start Date: NOV 21, 2011 End Date: Participant: SCHROEDER PROPERTIES LIMITED (VANCOUVER)
Role(s): DEVELOPER/ASSOCIATED COMPANY
Start Date: JUL 01, 1999

Er Participant: TRILLIUM CORPORATION (VANCOUVER) Role(s): FORMER PROPERTY OWNER Start Date: APR 07, 1993 End Date: DEC 28, 1993 Participant: VANCOUVER ESPERANZA SOCIETY
Role(s): PROPERTY OWNER
Start Date: NOV 21, 2011 End Date: Participant: WALTON, DOUG G
ROIe(s): ALTERNATE MINISTRY CONTACT
Start Date: JUL 26, 1999 BC Online: Site Registry For: PB64131 KEYSTONE ENVIRONMENTAL LTD. As of: MAY 04, 2014 14-05-09 13: 44: 16 Folio: 12108 Page 9 SITE PARTICIPANTS Participant: WARD, JOHN E H
ROIe(s): MAIN MINISTRY CONTACT
Start Date: FEB 28, 1997 End Date: Participant: WIENS, JOHN H (MELP) Role(s): ALTERNATE MINISTRY CONTACT tart Date: DEC 18, 1989 End Date: JUL 05, 1994 Start Date: DEC 18, 1989 DOCUMENTS Title: RESULTS OF GROUNDWATER MONITORING AT THE FORMER FREIGHT-HOUSE LANDS SITE, VANCOUVER, BC - 2013 MONITORING PROGRAM Authored: MAR 12, 2014 Sub Submitted: MAR 31, 2014 Parti ci pants Rol e GOLDER ASSOCIATES LTD **AUTHOR** GOLDER ASSOCIATES AUTHOR Title: RESULTS OF GROUNDWATER MONITORING AT THE FORMER FREIGHT-HOUSE LANDS SITE, VANCOUVER, BC - 2012 MONITORING PROGRAM Authored: NOV 09, 2012 Submitted: DEC 21, 2012

GOLDER ASSOCIATES

VANCOUVER ESPERANZA SOCIETY

Notes: REPORT INCLUDES SITES 1100, 6478 & 6477. REPORT FILED IN SITE 1100

FILE.

Parti ci pants

Title: RESULTS OF GROUNDWATER MONITORING AT THE FORMER FREIGHT-HOUSE LANDS SITE, VANCOUVER, BC - 2011 MONITORING PROGRAM

Page 9

Rol e

Si teRegDetai | Si tel D1100Lat49Long123. txt Authored: OCT 25, 2011 Submitted: OCT 31, 2011 Parti ci pants Rol e **GOLDER ASSOCIATES AUTHOR** Notes: REPORT INCLUDES SITES 1100, 6478 & 6477. REPORT FILED IN SITE 1100 FI LE. TITLE: RESULTS OF GROUNDWATER MONITORING AT THE FORMER FREIGHTHOUSE LANDS/TECH-PARK DEVELOPMENT SITE, VANCOUVER, BC - 2010 MONITORING **PROGRAM** Authored: SEP 07, 2010 Submitted: OCT 29, 2010 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY)
Notes: REPORT INCLUDES SITES 1100, 6478 & 6477. **AUTHOR** REPORT FILED IN SITE 1100 FILE. Title: RESULTS OF GROUNDWATER MONITORING AT THE FORMER FREIGHTHOUSE LANDS/ TECH-PARK DEVELOPMENT SITE, VANCOUVER, BC - 2009 MONITORING PROGRAM Authored: 0CT 06, 2009 Submitted: OCT 13, 2009 Rol e Parti ci pants GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR** Notes: REPORT INCLUDES SITES 1100, 6478 & 6477. REPORT FILED IN SITE 1100 FILE. As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 16 Folio: 12108 Page 10 DOCUMENTS TITLE: ANNUAL GROUNDWATER MONITORING FROMER TECH-PARK DEVELOPMENT SITE, STATION STREET, VANCOUVER, BC Authored: MAR 27, 2008 Submitted: SEP 10, 2008 Parti ci pants Rol e GOLDER ASSOCIATES LTD **AUTHOR** TITLE: ANNUAL GROUNDWATER MONITORING FORMER TECH-PARK DEVELOPMENT SITE, STATION STREET, VANCOUVER, BC Authored: MAR 02, 2007 Submitted: APR 02, 2007 Parti ci pants Rol e GOLDER ASSOCIATES LTD **AUTHOR** TITLE: REMEDIATION PLAN FREIGHTHOUSE LANDS, VANCOUVER, BC, ADDENDUM NO. 2 Submitted: JUL 01, 1999 Authored: JUL 01, 1999 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY) AUTHOR SCHROEDER PROPERTIES LIMITED (VANCOUVER) **RECIPIENT**

Title: GROUNDWATER MONITORING, FREIGHTHOUSE LANDS AND H.Y. LOUIE SITE, Page 10

Title: ADDENDUM TO REMEDIATION PLAN, FREIGHTHOUSE LANDS, VANCOUVER, BC

Authored: MAR 01, 1999

GOLDER ASSOCIATES LTD (BURNABY)

TRILLIUM CORPORATION (VANCOUVER)

Parti ci pants

Submitted: MAR 01, 1999

Rol e

AUTHOR

COMMI SSI ONER

Si teRegDetai | Si tel D1100Lat49Long123. txt

VANCOUVER, BC

Authored: JAN 13, 1999 Submitted: JAN 14, 1999

Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY)

AUTHOR

TRILLIUM CORPORATION (VANCOUVER) COMMI SSI ONER Notes: LETTER REPORT

TITLE: SCREENING ECOLOGICAL RISK ASSESSMENT FOR GROUNDWATER, FREIGHTHOUSE

LANDS, VANCOUVER, BC Authored: FEB 05, 1997 Submitted: FEB 05, 1997

Rol e Parti ci pants GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR**

EAST FALSE CREEK HOLDING COMPANY LTD. **COMMISSIONER** IBI GROUP ASSOCIATE PARTNERS LTD. (VANCOUVER, **RECIPIENT**

MCLENEHAN, ROBERT E (MELP) **REVIEWER**

Notes: ADDÉNDUM TO THÈ REMÉDIATION PLAN DATED JULY 31, 1996

Title: REMEDIATION PLAN FOR FREIGHTHOUSE LANDS, VANCOUVER, BC

Authored: JUL 31, 1996

Submitted: JUL 31, 1996 Parti ci pants Rol e

GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR**

EAST FALSE CREEK HOLDING COMPANY LTD. **COMMISSIONER** IBI GROUP ASSOCIATE PARTNERS LTD. (VANCOUVER, **RECIPIENT**

B. C.)

BC Online: Site Registry As of: MAY 04, 2014 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 16

Folio: 12108 Page 11

DOCUMENTS

Title: MEETING AGENDA RISK ASSESSMENT OF FREIGHTHOUSE AND SEQUENCE 1706

LANDS

Authored: JUN 21, 1996 Submitted: JUN 21, 1996

Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY)
Notes: OVERVIEW OF SITE DEVELOPMENT **AUTHOR**

Title: REMEDIATION PLAN AND SOIL AND WATER MANAGEMENT PROCEDURES FOR THE FORMER BNR STATION STREET SITE, VANCOUVER, BC

Authored: MAY 01, 1994 Submitted: MAY 24, 1994

Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR**

EAST FALSE CREEK HOLDING COMPANY LTD. **COMMISSIONER**

IBI GROUP ASSOCIATE PARTNERS LTD. (VANCOUVER, **RECIPIENT** B. C.

MCLENEHAN, ROBERT E (MELP) **REVIEWER**

TITLE: REMEDIAL EXCAVATION AND SUPPLEMENTAL INVESTIGATION FORMER BNR AND

NOLAN TILE PROPERTIES, VANCOUVER, BC

Submitted: AUG 01, 1993 Authored: AUG 01, 1993

Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR**

Page 11

Si teRegDetai | Si tel D1100Lat49Long123. txt TRILLIUM CORPORATION (VANCOUVER)

MCLENEHAN, ROBERT E (MELP)

Notes: FOR ADJACENT NOLAN TILE PROPERTIES ON MALKIN ROAD (SEE SITE ASSOCI ATI ONS) Title: SOIL VAPOUR AND METALLIC SURVEY NOLAN TILE AND FORMER BURLINGTON NORTHERN RAILWAY PROPERTIES, VANCOUVER, BC Authored: JUL 01, 1993 Submitted: JUL 01, 1993 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY)

TRILLIUM CORPORATION (VANCOUVER)

MCLENEHAN, ROBERT E (MELP)

Notes: FOR ADJACENT NOLAN TILE PROPERTIES ON MALKIN ROAD (SEE SITE ASSOCI ATI ONS) TITLE: PHASE IV ENVIRONMENTAL ASSESSMENT OF FORMER BURLINGTON NORTHERN RAILWAY YARD, STATION STREET, VANCOUVER, BC Authored: AUG 01, 1992 Submitted: APR 01, 1993 Participants
PITEAU KOMEX ENVIRONMENTAL (NORTH VANCOUVER)
GLACIER PARK COMPANY (SEATTLE, WASH.) Rol e **AUTHOR** COMMI SSI ONER MCLENEHAN, ROBERT E (MELP) **REVIEWER** Title: SUMMARY REPORT: FORMER BNR YARD SITE ASSESSMENTS Authored: MAR 01, 1992 Submitted: MAY 12, 1992 Parti ci pants Rol e GLACIER PARK COMPANY (SEATTLE, WASH.) **AUTHOR** OUELLET, LOUISE (MINISTRY) **REVIEWER** As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 16 Folio: 12108 Page 12 **DOCUMENTS** TITLE: BURLINGTON NORTHERN RAIL STATION STREET RAILYARD PHASE III -ENVIRONMENTAL ASSESSMENT Authored: JAN 01, 1992 Submitted: MAY 12, 1992 Parti ci pants Rol e PITEAU KOMEX ENVIRONMENTAL (NORTH VANCOUVER) **AUTHOR** GLACIER PARK COMPANY (SEATTLE, WASH.) COMMISSIONER OUELLET, LOUISE (MINISTRY) REVI EWER Title: PHASE II ENVIRONMENTAL ASSESSMENT BN RAILYARD VANCOUVER, BC Authored: APR 01, 1990 Submitted: MAY 12, 1992 Parti ci pants Rol e MTR CONSULTANTS LTD. (VANCOUVER, B.C.)
GLACIER PARK COMPANY (SEATTLE, WASH.)
OUELLET, LOUISE (MINISTRY) **AUTHOR COMMI SSI ONER** REVI EWER Title: PRELIMINARY ENVIRONMENTAL ASSESSMENT B.N.R. RAILYARD, VANCOUVER B.C. Submitted: DEC 18, 1989 Authored: JUN 01, 1989 Parti ci pants Rol e MTR CONSULTANTS LTD. (VANCOUVER, B.C.) **AUTHOR**

Page 12

GLACIER PARK WIENS, JOHN	COMPANY (SEATTĽE	etailSiteID110 , WASH.) = = = = = = =	00Lat49Lor	ng123.t COMMIS REVIEW	SI ONEF	? = =	= =	= = =
ASSOCI ATED SI	TES							
Site id: Notes:	137				Date:	FEB	26,	1991
Site id: Notes:	201				Date:	FEB	26,	1991
Site id: Notes:	447				Date:	FEB	26,	1991
Site id: Notes:	6477				Date:	OCT	16,	2003
Site id: Notes:	6478				Date:	OCT	16,	2003
SUSPECTED LAN	= = = = = = = = = = = = = = = = = = =	= = = = = =	: = = = =	= = =	= = =	= =	= =	= = =
Description: Notes:	CHEMICAL INDUSTR POSSIBLE CONTAMI	IES AND ACTIVI NATION SOURCE	TIES ADJACENT	PROPER	TY			
	LANDFILL - INDUS POSSIBLE CONTAMI		ADJACENT	PROPER	 TY			
	METAL SALVAGE OP POSSIBLE CONTAMI		ADJACENT	PROPER	TY			

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09
For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 16
Folio: 12108 Page 13

Description: METAL SMELTING/PROCESSING/FINISHING INDUSTRIES/ACTIVITIES
Notes: POSSIBLE CONTAMINATION SOURCE ADJACENT PROPERTY

Description: PETRO. PROD., /PRODUCE WATER STRG ABVEGRND/UNDERGRND TANK
Notes:

Description: RAIL CAR/LOCOMOTIVE MAINTENANCE/CLEAN/SALVAGE INCL RAILYARDS
Notes:

PARCEL DESCRIPTIONS

Date Added: AUG 22, 1995 Crown Land PIN#:
LTO PID#: 018550185 Crown Land File#:
Land Desc: LOT A DISTRICT LOTS 196 AND 2037 PLAN LMP14138
No activities were reported for this site

End of Detail Report Page 13

Si teRegDetai I Si tel D6477Lat49Long123. txt

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 28

Folio: 12108 Page 1

Detail Report SITE LOCATION

Region: SURREY, LOWER MAINLAND

Si te ID: 6477 Latitude: 49d 16m 35.5s Victoria File: 26250-20/6477 Longitude: 123d 05m 44.4s

Regional File:

01. 4.1. 040 DDI 02 072557

City: VANCOUVER Prov/State: BC

Site Address: 310 PRIOR STREET City: VANCOUVER Postal Code: V6A 2E5

Registered: MAR 31, 2000 Updated: MAR 27, 2013 Detail Removed: MAR 27, 2013

Notations: 0 Participants: 0 Associated Sites: 0 Documents: 0 Susp. Land Use: 0 Parcel Descriptions: 0

Location Description: LAT/LONG CONFIRMED USING GOAT BY MINISTRY STAFF

Record Status: ACTIVE - UNDER REMEDIATION

Fee category: MEDIUM SITE, COMPLEX CONTAMINATION

No activities were reported for this site

End of Detail Report

Si teRegDetai | Si tel D6478Lat49Long123. txt

As of: MAY 18, 2014 BC Online: Site Registry 14-05-21 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 16: 35: 20

Folio: 12018 Page

Detail Report

SITE LOCATION 6478 Latitude: 49d 16m 35.3s Site ID: Longi tude: 123d 05m 51.1s

Victoria File: 26250-20/6478 Regional File:

Region: SURREY, LOWER MAINLAND

Site Address: 250 PRIOR STREET

Prov/State: BC

City: VANCOUVER Postal Code: V6A 2E5

Registered: MAR 31, 2000 Updated: MAR 27, 2013 Detail Removed: MAR 27, 2013

Parti ci pants: Notations: 13 8 Associated Sites: 11 Susp. Land Use: O Parcel Descriptions: 0 Documents:

Location Description: VANCOUVER

Record Status: ACTIVE - UNDER REMEDIATION

Fee category: MEDIUM SITE, SIMPLE CONTAMINATION

NOTATI ONS

Notation Type: MONITORING REPORT SUBMITTED

Notation Class: ADMINISTRATIVE

Initiated: OCT 31, 2011 Approved: OCT 31, 2011

Ministry Contact: WALTON, DOUG G

Notation Participants Notation Roles GOLDER ASSOCIATE'S LTD (BURNABY) SUBMITTED BY

Note: REPORT RECEIVED 2011-10-31. REPORT (DATED 2011-10-25) SUBMITTED IN CONJUNCTION WITH APPROVAL IN PRINCIPLE ISSUED 2000-06-12. RÉPORT INCLUDES SITES 1100, 6478 & 6477. REPORT FILED IN SITE 1100 FILE.

Notation Type: MONITORING REPORT SUBMITTED Notation Class: ADMINISTRATIVE Initiated: SEP 07, 2010

Approved: SEP 07, 2010

Ministry Contact: HACKINEN, COLEEN (SURREY)

Notation Participants Notation Roles GOLDER ASSOCIATES LTD (BURNABY) SUBMITTED BY

Note: REPORT RECEIVED 2010-10-29. REPORT (DATED 2010-09-07) SUBMITTED IN CONJUNCTION WITH APPROVAL IN PRINCIPLE ISSUED 2000-06-12. REPORT INCLUDES SITES 1100, 6478 & 6477. REPORT FILED IN SITE 1100 FILE.

Notation Type: MONITORING REPORT SUBMITTED

Notation Class: ADMINISTRATIVE

Initiated: OCT 13, 2009 Approved: 0CT 13, 2009

Si teRegDetai | Si tel D6478Lat49Long123. txt

As of: MAY 18, 2014 BC Online: Site Registry

For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 16: 35: 20 Folio: 12018 Page

NOTATI ONS

Ministry Contact: HEWLETT, LUCY

Notation Participants Notation Roles GOLDER ASSOCIATES LTD (BURNABY) SUBMITTED BY

Note: REPORT (DATED 06 OCTOBER 2009) SUBMITTED IN CONJUNCTION WITH APPROVAL IN PRINCIPLE ISSUED 12 JUNE 2000. REPORT INCLUDES SITES 1100, 6478 & 6477. REPORT FILED IN SITE 1100 FILE.

Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL

Initiated: JUN 12, 2000 Approved: JUN 12, 2000

Ministry Contact: HACKINEN, COLEEN (SURREY)

Note: GOLDER 2011-10-27 TRANSMITTAL LETTER WITH 2011 MONITORING REPORT STATES "IT IS OUR UNDERSTANDING THAT THERE HAS BEEN NO SIGNIFICANT CHANGE TO THE INFORMATION PROVIDED IN 2010 WITH REGARDS TO THE SITE OR THE DEVELOPMENT SCHEDULE. '

Required Actions: SCHEDULE B CONDITION 10 "THE MINISTRY WILL BE PROVIDED WITH A SCHEDULE FOR THE PROPOSED SITE DEVELOPMENT WITHIN 90 DAYS OF THE DATE OF THIS APPROVAL AND WILL BE NOTIFIED ON AN ANNUAL BASIS, THEREAFTER, OF ANY CHANGES OR ANTICIPATED CHANGES IN SCHEDULE UNTIL SUCH TIME AS THE DEVELOPMENT AND/OR REMEDIATION IS COMPLETE. "

Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL

Initiated: JUN 12, 2000 Approved: JUN 12, 2000

Ministry Contact: HACKINEN, COLEEN (SURREY)

Note: ANNUAL GROUNDWATER MONITORING REPORT FOR SITES 1100, 6477 & 6478 INCLUDED IN SAME REPORT.

Required Actions: SCHEDULE B CONDITION 9 - "GROUNDWATER AND SOIL MONITORING WILL BE CARRIED OUT AS DESCRIBED IN THE INSPECTION AND MONITORING PLAN SECTION OF THE REMEDIATION PLAN. "

Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: JUN 12, 2000

Approved: JUN 12, 2011

Ministry Contact: WALTON, DOUG G

Note: GOLDER 2012-12-17 TRANSMITTAL LETTER WITH 2012 MONITORING REPORT STATES "IT IS OUR UNDERSTANDING THAT THERE HAS BEEN NO SIGNIFICANT CHANGE TO THE INFORMATION PROVIDED IN 2010 WITH REGARDS TO THE SITE OR THE DEVELOPMENT SCHEDULE." ANNUAL GROUNDWATER MONITORING REPORT - SITES 1100, 6477 & 6478 Page 2

14-05-21

Si teRegDetai | Si tel D6478Lat49Long123. txt INCLUDED IN SAME REPORT.

As of: MAY 18, 2014 BC Online: Site Registry 14-05-21 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 16: 35: 20 Page

Folio: 12018 NOTATI ONS

Required Actions: SCHEDULE B CONDITION 9 - "GROUNDWATER AND SOIL MONITORING WILL BE CARRIED OUT AS DESCRIBED IN THE INSPECTION AND MONITORING PLAN SECTION OF THE REMEDIATION PLAN". CONDITION 10 - "THE MINISTRY WILL BE PROVIDED WITH A SCHEDULE FOR THE PROPOSED SITE DEVELOPMENT WITHIN 90 DAYS OF THE DATE OF THIS APPROVAL. THE MINISTRY WILL BE NOTIFIED ON AN ANNUAL BASIS, THEREAFTER, OF ANY CHANGES OR ANTICIPATED CHANGES IN SCHEDULE UNTIL SUCH TIME AS THE DEVELOPMENT AND/OR REMEDIATION IS COMPLETE."

Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: JUN 12, 2000

Approved: JUN 12, 2000

Ministry Contact: HACKINEN, COLEEN (SURREY)

Note: ANNUAL GROUNDWATER MONITORING REPORT - SITES 1100, 6477 & 6478 INCLUDED IN SAME REPORT.

Required Actions: SCHEDULE B CONDITION 9 (GROUNDWATER AND SOIL MONITORING WILL BE CARRIED OUT AS DESCRIBED IN THE INSPECTION AND MONITORING PLAN SECTION OF THE REMEDIATION PLAN).

Notation Type: APPROVAL IN PRINCIPLE ISSUED
Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS

Initiated: JUN 12, 2000 Approved: JUN 12, 2000

Ministry Contact: WALTON, DOUG G

Notation Participants Notation Roles SCHROEDER PROPERTIES LIMITED (VANCOUVER) REQUESTED BY WALTON, DOUG G ISSUED BY

Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL

Initiated: JUN 12, 2000 Approved: JUN 12, 2000

Ministry Contact: HACKINEN, COLEEN (SURREY)

Note: TECHNICAL MEMO DATED 2010-10-20 FROM GOLDER ASSOCIATES ADVISES THAT "CURRENTLY, THE REMEDIATION/RE-DEVELOPMENT SCHEDULE HAS NOT BEEN ESTABLISHED WITH CERTAINTY...RE-DEVELOPMENT IS LIKELY AT LEAST TWO YEARS FROM COMMENCI NG. "

Required Actions: SCHEDULE B CONDITION 10 "THE MINISTRY WILL BE PROVIDED WITH A SCHEDULE FOR THE PROPOSED SITE DEVELOPMENT WITHIN 90 DAYS OF THE DATE OF THIS APPROVAL AND WILL BE NOTIFIED ON AN ANNUAL BASIS, THEREAFTER, OF ANY CHANGES OR ANTICIPATED CHANGES IN SCHEDULE UNTIL SUCH TIME AS THE DEVELOPMENT Page 3

Si teRegDetai | Si tel D6478Lat49Long123. txt AND/OR REMEDIATION IS COMPLETE.

Notation Type: REQUIREMENT(S) IMPOSED IN APPROVAL IN PRINCIPLE Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL

As of: MAY 18, 2014 BC Online: Site Registry 14-05-21 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 16: 35: 20

Folio: 12018 Page

NOTATI ONS

Initiated: JUN 12, 2000 Approved: JUN 12, 2000

Ministry Contact: HACKINEN, COLEEN (SURREY)

Note: ANNUAL GROUNDWATER MONITORING REPORT FOR SITES 1100, 6477 & 6478 INCLUDED IN SAME REPORT.

Required Actions: SCHEDULE B CONDITION 9 - "GROUNDWATER AND SOIL MONITORING WILL BE CARRIED OUT AS DESCRIBED IN THE INSPECTION AND MONITORING PLAN SECTION OF THE REMEDIATION PLAN". CONDITION 10 - "THE MINISTRY WILL BE PROVIDED WITH A SCHEDULE FOR THE PROPOSED SITE DEVELOPMENT WITHIN 90 DAYS OF THE DATE OF THIS APPROVAL. THE MINISTRY WILL BE NOTIFIED ON AN ANNUAL BASIS, THEREAFTER, OF ANY CHANGES OR ANTICIPATED CHANGES IN SCHEDULE UNTIL SUCH TIME AS THE DEVELOPMENT AND/OR REMEDIATION IS COMPLETE."

Notation Type: DETAILED SITE INVESTIGATION ORDER ISSUED (WMA 26.2(1))
Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS
Initiated: FEB 07, 2000 Approved: FEB 07,

Approved: FEB 07, 2000

Ministry Contact: EVANS, PEGGY L

Notation Type: REMEDIAL PLAN SUBMITTED WITHOUT RISK ASSESSMENT: INTERNAL

REVIEW REQUESTED

Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS

Initiated: FEB 07, 2000 Approved: FEB 07, 2000

Ministry Contact: EVANS, PEGGY L

Notation Type: PRELIMINARY SITE INVESTIGATION ORDER ISSUED (WMA 26.2(1)) Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS

Initiated: FEB 07, 2000 Approved: FEB 07, 2000

Ministry Contact: EVANS, PEGGY L

SITE PARTICIPANTS

Participant: EVANS, PEGGY L ROIe(s): ALTERNATE MINISTRY CONTACT Start Date: FEB 07, 2000 End Date:

Participant: GOLDER ASSOCIATES LTD (BURNABY)

Role(s): ENVIRONMENTAL CONSULTANT/CONTRÁCTOR

Start Date: FEB 01, 2000 End Date: _ _ _ _ _ _ _ _ _

Si teRegDetai | Si tel D6478Lat49Long123. txt Participant: HACKINEN, COLEEN (SURREY)
ROIe(s): ALTERNATE MINISTRY CONTACT
Start Date: JUN 12, 2000 End Date: Participant: HARRIS, GLENN E ROLE(s): MAIN MINISTRY CONTACT End Date: Start Date: FEB 01, 2000 BC Online: Site Registry As of: MAY 18, 2014 14-05-21 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 16: 35: 20 Folio: 12018 Page SITE PARTICIPANTS Participant: HEWLETT, LUCY Role(s): ALTERNATE MINISTRY CONTACT Start Date: OCT 13, 2009 End Date: Participant: ING REALTY MANAGEMENT LLC
Role(s): REALTY COMPANY
Start Date: AUG 28, 2003 End Date: End Date: Participant: SCHROEDER PROPERTIES LIMITED (VANCOUVER) Role(s): PROPERTY OWNER Start Date: FEB 01, 2000 Participant: WALTON, DOUG G
Role(s): ALTERNATE MINISTRY CONTACT
Start Date: JUN 12, 2000 End Date: DOCUMENTS TITLE: RESULTS OF GROUNDWATER MONITORING AT THE FORMER FREIGHT-HOUSE LANDS SITE, VANCOUVER, BC - 2012 MONITORING PROGRAM Authored: NOV 09, 2012 Sub Submitted: DEC 21, 2012 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY)
VANCOUVER ESPERANZA SOCIETY
Notes: REPORT INCLUDES SITES 1100, 6478 AND 6477. REPORT FILED IN SITE 1100 FI LE. TITLE: RESULTS OF GROUNDWATER MONITORING AT THE FORMER FREIGHT-HOUSE LANDS SITE, VANCOUVER, BC - 2011 MONITORING PROGRAM Authored: 0CT 25, 2011 Submitted: OCT 31, 2011 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY)

Notes: REPORT INCLUDES SITES 1100, 6478 AND 6477. REPORT FILED IN SITE 1100 FI LE. Title: RESULTS OF GROUNDWATER MONITORING AT THE FORMER FREIGHTHOUSE

Page 5

LANDS/TECH-PARK DEVELOPMENT SITE, VANCOUVER, BC - 2010 MONITORING

PROGRAM

Parti ci pants

Authored: SEP 07, 2010

Submitted: OCT 29, 2010

Rol e

Si teRegDetai | Si tel D6478Lat49Long123. txt GOLDER ASSOCIATES LTD (BURNĂBY) ĂUTHOR Notes: REPORT INCLUDES SITES 1100, 6478 AND 6477. REPORT FILED IN SITE 1100 FI LE. Title: RESULTS OF GROUNDWATER MONITORING AT THE FORMER FREIGHTHOUSE LANDS/TECH-PARK DEVELOPMENT SITE, VANCOUVER, BC - 2009 MONITORING **PROGRAM** Authored: 0CT 06, 2009 Submitted: OCT 13, 2009 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR** As of: MAY 18, 2014 BC Online: Site Registry 14-05-21 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 16: 35: 20 Folio: 12018 Page 6 **DOCUMENTS** Notes: REPORT INCLUDES SITES 1100, 6478 AND 6477. REPORT FILED IN SITE 1100 FILE. Title: ANNUAL GROUNDWATER MONITORING. FORMER TECH-PARK DEVELOPMENT, STATION STREET, VANCOUVER, BC Authored: AUG 10, 2004 Submitted: AUG 11, 2004 Parti ci pants Role **AUTHOR** GOLDER ASSOCIATES LTD (BURNABY) Title: ANNUAL GROUNDWATER MONITORING, TECH-PARK DEVELOPMENT, VANCOUVER, BC Authored: AUG 28, 2003 Submitted: SEP 19, 2003 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR** ING REALTY MANAGEMENT LLC COMMISSIONER WALTON, DOUG G RECIPIENT HARRIS, GLENN E REVI EWER Title: ANNUAL GROUNDWATER MONITORING, TECH-PARK DEVELOPMENT, VANCOUVER, BC Authored: JUN 13, 2002 Submitted: JUN 17, 2002 Rol e Parti ci pants GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR** COMMI SSI ONER SCHROEDER PROPERTIES LIMITED (VANCOUVER) HARRIS, GLENN E REVI EWER Notes: LETTER REPORT Title: ANNUAL GROUNDWATER MONITORING, TECH-PARK DEVELOPMENT, VANCOUVER, BC Authored: JUN 08, 2001 Submitted: JUN 21, 2002 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR** SCHROEDER PROPERTIES LIMITED (VANCOUVER) COMMI SSI ONER HARRIS, GLENN E REVI EWER Title: REMEDIATION PLAN, 250 PRIOR STREET, VANCOUVER, BC Authored: FEB 01, 2000 Submitted: FEB 09, 2000 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY) **AUTHOR**

Title: DETAILED ENVIRONMENTAL SITE INVESTIGATION, 250 PRIOR STREET,

Page 6

City of Vancouver - FOI 2022-084 - Page 513 of 1790

Si teRegDetai | Si tel D6478Lat49Long123. txt VANCOUVER, BC Authored: FEB 01, 2000 Submitted: FEB 09, 2000 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY) AUTHOR Title: STAGE 1 PRELIMINATRY SITE INVESTIGATION, THE H.Y. LOUIE SITE, 250 PRIOR STREET, VANCOUVER, BC Authored: FEB 01, 2000 Submitted: FEB 09, 2000 Parti ci pants Rol e GOLDER ASSOCIATES LTD (BURNABY) AUTHOR SCHROEDER PROPERTIES LIMITED (VANCOUVER) COMMISSIONER Title: REMEDIATION PLAN, 250 PRIOR STREET, VANCOUVER, BC

As of: MAY 18, 2014 BC Online: Site Registry 14-05-21 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 16: 35: 20 Folio: 12018 Page **DOCUMENTS** Authored: FEB 01, 2000 Submitted: FEB 09, 2000 Parti ci pants Rol e

SCHROEDER PROPERTIES LIMITED (VANCOUVER) Title: DETAILED ENVIRONMENTAL SITE INVESTIGATION, 250 PRIOR STREET, VANCOUVER, BC Authored: FEB 01, 2000 Submitted: FEB 09, 2000 Parti ci pants Role SCHROEDER PROPERTIES LIMITED (VANCOUVER) COMMI SSI ONER HARRIS, GLENN E REVI EWER

TITLE: STAGE 1 PRELIMINATRY SITE INVESTIGATION, THE H.Y. LOUIE SITE, 250 PRIOR STREET, VANCOUVER, BC Authored: FEB 01, 2000 Submitted: FEB 09, 2000 Parti ci pants Rol e HARRIS, GLENN E REVI EWER

Title: REMEDIATION PLAN, 250 PRIOR STREET, VANCOUVER, BC

Authored: FEB 01, 2000 Submitted: FEB 09, 2000 Parti ci pants Rol e

HARRIS, GLENN E **REVIEWER**

_ _ _ _ _ _ _ _ _ _ _ ASSOCIATED SITES

Site id: 1100 Date: OCT 16, 2003 Notes:

Site id: 6477 Date: OCT 16, 2003 Notes:

No activities were reported for this site

End of Detail Report

COMMI SSI ONER

Si teRegDetai I Si tel D12143Lat49Long123. txt

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 50 Page

Folio: 12108 Detail Report

SITE LOCATION

Latitude: 49d 16m 29.1s Site ID: 12143 Victoria File: 25259029.12143 Regional File: 26250-20/12143 Longi tude: 123d 05m 36.8s

Region: SURREY, LOWER MAINLAND

Site Address: 580 MALKIN AVENUE

Prov/State: BC

City: VANCOUVER Postal Code: V6A 2K2

Registered: MAR 19, 2010 Updated: JAN 20, 2011 Detail Removed: JAN 20, 2011

13 Notations: 10 Parti ci pants: Associated Sites: 0 Documents: 22 Susp. Land Use: 2 Parcel Descriptions: 1

Location Description: SITE CREATED BY SITE PROFILE, ENTERED 2010-03-16.

LAT/LONG VERIFIED USING GOOGLE EARTH 2010-03-16.

Record Status: ACTIVE - REMEDIATION COMPLETE

Fee category: UNRANKED

NOTATI ONS

Notation Type: CERTIFICATE OF COMPLIANCE ISSUED USING RISK BASED STANDARDS

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL

Initiated: DEC 14, 2010 Approved: DEC 14, 2010

Ministry Contact: LOCKHART, DAVE

Notation Participants Notation Roles VANCOUVER BOARD OF PARKS AND RECREATION RECEIVED BY WALTON, DOUG G ISSUED BY

APPROVED PROFESSIONAL LARSEN, LORI C.

Note: ISSUED ON THE RECOMMENDATION OF AN APPROVED PROFESSIONAL (LORI C. LARSEN) UNDER PROTOCOL 6 OF THE CONTAMINATED SITES REGULATION

Required Actions: RESTRICTIONS ON LAND AND WATER USE, BUILDING CONSTRUCTION, SOIL COVER AND VEGETATION; PERFORMANCE VERIFICATION; AND RECORD KEEPING, AS SET OUT IN SCHEDULE B OF THE CERTIFICATE OF COMPLIANCE.

Notation Type: SITE RISK CLASSIFIED - SITE IS NON-HIGH RISK

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: NOV 02, 2010

Approved: NOV 02, 2010

Ministry Contact: O'GRADY, TYLER

Notation Participants Notation Roles KEYSTONE ENVIRONMENTAL LTD. SUBMITTED BY

Notation Type: CERTIFICATE OF COMPLIANCE REQUESTED

Si teRegDetai I Si tel D12143Lat49Long123. txt

As of: MAY 04, 2014 BC Online: Site Registry 14-05-09

For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 50 Folio: 12108 Page

NOTATIONS

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL

Initiated: OCT 28, 2010 Approved: OCT 28, 2010

Ministry Contact: HEWLETT, LUCY

Notation Participants VANCOUVER BOARD OF PARKS AND RECREATION Notation Roles REQUESTED BY

KEYSTONE ENVIRONMENTAL LTD. APPROVED PROFESSIONAL

Notation Type: NOTICE OF INDEPENDENT REMEDIATION COMPLETION SUBMITTED

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL

Initiated: APR 26, 2010 Approved: APR 26, 2010

Ministry Contact: SAMWAYS, JENNIFER

Notation Participants Notation Roles KEYSTONE ENVIRONMENTAL LTD SUBMITTED BY

Note: COMPLETED: 2010-04-13

Notation Type: NOTICE OF INDEPENDENT REMEDIATION INITIATION SUBMITTED

Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: APR 08, 2010

Approved: APR 08, 2010

Ministry Contact: SAMWAYS, JENNIFER

Notation Roles Notation Participants KEYSTONE ENVIRONMENTAL LTD SUBMITTED BY

Note: START: 2010-03-22

- - - - - - - - - - - - -

Notation Type: CASE MANAGEMENT ITEM

Notation Class: ADMINISTRATIVE Initiated: MAR 25, 2010

Approved: MAR 25, 2010

Ministry Contact: O'GRADY, TYLER

_ _ _ _ _ _ _ _ _ _ Notation Type: SITE PROFILE - FURTHER INVESTIGATION REQUIRED BY THE MINISTRY

Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS

Initiated: MAR 16, 2010 Approved:

Ministry Contact: O'GRADY, TYLER

Note: 2010-03-16: RELEASE OF THE DEVELOPMENT PERMIT AND ZONING APPLICATION GRANTED BECAUSE IN THE OPINION OF THE DIRECTOR THE SITE DOES NOT POSE A SIGNIFICANT RISK.

Required Actions: PRELIMINARY SITE INVESTIGATION REQUIRED.

Notation Type: SITE PROFILE REVIEWED - FURTHER INVESTIGATION REQUIRED BY THE Page 2

Si teRegDetai | Si tel D12143Lat49Long123. txt MI NI STRY

BC Online: Site Registry As of: MAY 04, 2014 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 50 Folio: 12108 Page NOTATI ONS Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL Initiated: MAR 16, 2010 Approved: Ministry Contact: O'GRADY, TYLER Note: 2010-03-16: RELEASE OF THE DEVELOPMENT PERMIT AND ZONING APPLICATION GRANTED BECAUSE IN THE OPINION OF THE DIRECTOR THE SITE DOES NOT POSE A SIGNIFICANT RISK. Required Actions: PRELIMINARY SITE INVESTIGATION REQUIRED. Notation Type: SITE PROFILE RECEIVED
Notation Class: ENVIRONMENTAL MANAGEMENT ACT: GENERAL
Initiated: MAR 11, 2010 Approved: Ministry Contact: O'GRADY, TYLER Notation Participants Notation Roles KEYSTONE ENVIRONMENTAL LTD SITE PROFILE SUBMITTED BY KEYSTONE ENVIRONMENTAL LTD SITE PROFILE SUBMITTED BY Notation Type: SITE PROFILE RECEIVED Notation Class: WASTE MANAGEMENT ACT: CONTAMINATED SITES NOTATIONS Initiated: MAR 11, 2010 Approved: Ministry Contact: O'GRADY, TYLER Notation Participants KEYSTONE ENVIRONMENTAL LTD Notation Roles SITE PROFILE SUBMITTED BY KEYSTONE ENVIRONMENTAL LTD SITE PROFILE SUBMITTED BY SITE PARTICIPANTS Participant: ACTIVE EARTH ENGINEERING LTD Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: JUN 12, 2009 End Date: Participant: CITY OF VANCOUVER, PARKS BOARD (VANCOUVER) Role(s): PROPERTY OWNER Start Date: MAR 11, 2010 End Date: Participant: HEWLETT, LUCY Role(s): ALTERNATE MINISTRY CONTACT Page 3

	Start Date:	Si teRegDetailSi te OCT 28, 2010	I D12143Lat49Long123. End	txt Date:
-	Participant: Role(s):	KEYSTONE ENVIRONMENTAL SITE PROFILE COMPLETOR	LTD	

BC Online: Site Registry As of: MAY 04, 2014 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 50 Folio: 12108 Page 4 SITE PARTICIPANTS SITE PROFILE CONTACT Start Date: MAR 11, 2010 End Date: Participant: KEYSTONE ENVIRONMENTAL LTD.
ROIe(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR End Date: Start Date: SEP 30, 2010 Participant: KEYSTONE ENVIRONMENTAL LTD. Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: AUG 01, 2010 End Date: Participant: LEVELTON CONSULTANTS LTD Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: APR 27, 2006 End Date: Participant: MINISTRY OF ENVIRONMENT Role(s): ASSOCIATED PROVINCIAL GOVERNMENT CONTACT Start Date: MAY 22, 1992 End Date: Participant: MTR CONSULTANTS LTD. (VANCOUVER, B.C.) Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR Start Date: JUN 23, 1993 End Date: Participant: O'GRADY, TYLER Role(s): MAIN MINISTRY CONTACT Start Date: MAR 11, 2010 End Date: Participant: PITEAU ASSOCIATES ENGINEERING LTD.
Role(s): ENVIRONMENTAL CONSULTANT/CONTRACTOR
Start Date: JAN 01, 1992 End Date: Participant: SAMWAYS, JENNIFER ROLE(s): ALTERNATE MINISTRY CONTACT Start Date: APR 08, 2010 End Date: Participant: VANCOUVER BOARD OF PARKS AND RECREATION ROIe(s): PROPERTY OWNER Start Date: OCT 28, 2010 End Date: DOCUMENTS

Page 4

Title: SUMMARY OF SITE CONDITION

Parti ci pants

Authored: 0CT 18, 2010

Submitted: OCT 28, 2010

Rol e

Si teRegDetai I Si tel D12143Lat49Long123. txt APPROVED PROFESSIONAL LARSEN, LORI C. Title: REPORT OF FINDINGS HUMAN HEALTH AND ECOLOGICAL RISK ASSESSMENT - TRILLIUM PARK SITE - 580 MALKIN AVENUE, VANCOUVER, BC Authored: 0CT 01, 2010 Submitted: OCT 28, 2010 Rol e Parti ci pants KEYSTONE ENVIRONMENTAL LTD. **AUTHOR** As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 50 Folio: 12108 Page **DOCUMENTS** Title: REPORT OF FINDINGS PRELIMINARY SITE INVESTIGATION STAGE 2, DETAILED SITE INVESTIGATION AND CONFIRMATION OF REMEDIATION REPORT, TRILLIUM PARK SITE - 5 Submitted: OCT 28, 2010 Authored: OCT 01, 2010 Parti ci pants Rol e KEYSTONE ENVIRONMENTAL LTD. AUTHOR Title: SUMMARY OF SITE CONDITION Authored: SEP 30, 2010 Submitted: OCT 28, 2010 Parti ci pants Rol e **AUTHOR** KEYSTONE ENVIRONMENTAL LTD. TITLE: REPORT OF FINDINGS, CONTAMINANT TRANSPORT MODELING, TRILLIUM PARK SITE 580 MALKIN AVENUE, VANCOUVER, BC Authored: AUG 11, 2010 Submitted: OCT 28, 2010 Parti ci pants Rol e KEYSTONE ENVIRONMENTAL LTD. **AUTHOR** Title: REPORT OF FINDINGS PRELIMINARY SITE INVESTIGATION STAGE 1, TRILLIUM PARK SITE - 580 MALKIN AVENUE, VANCOUVER, BC Submitted: OCT 28, 2010 Authored: AUG 01, 2010 Rol e Parti ci pants KEYSTONE ENVIRONMENTAL LTD. AUTHOR

Title: Soil and Groundwater Assessment at the Trillium Park Site, Former Lot F of Burlington Northern Railway Yard, Malkin Avenue, Vancouver, BC Submitted: OCT 28, 2010 Authored: JUN 12, 2009

Parti ci pants Rol e ACTIVE EARTH ENGINEERING LTD **AUTHOR**

LETTER: RE: 580 MALKIN. ADDRESSED TO CITY OF VANCOUVER ENVIRONMENTAL PROTECTI ON

Authored: MAR 02, 2009 Submitted: OCT 28, 2010 Parti ci pants Rol e

MINISTRY OF ENVIRONMENT AUTHOR REPORT: RE: GEOTECHNICAL INVESTIGATION PROPOSED TRILLIUM FIELD

DEVELOPMENT, MALKIN AVENUE, VANCOUVER, BC Authored: APR 27, 2006 Submitted: OCT 28, 2010 Parti ci pants Rol e

Page 5

```
Si teRegDetai I Si tel D12143Lat49Long123. txt
 LEVELTON CONSULTANTS LTD
                                                              AUTHOR
 Title: LETTER: RE: PARK DEVELOPMENT PARCEL I EAST FALSE CREEK LANDS.
ADDRESSED TO THE VANCOUVER PARKS AND THE BC MINISTRY OF ENVIRONMENT,
         LANDS AND PARKS
                Authored: NOV 22, 1994
                                                            Submitted: OCT 28, 2010
                                                               Rol e
 MTR CONSULTANTS LTD. (VANCOUVER, B.C.)
                                                               AUTHOR
 TITLE: LETTER: RE: FORMER BURLINGTON NORTHERN RAILYARD - VANCOUVER, BC,
 As of: MAY 04, 2014
                               BC Online: Site Registry
                                                                                    14-05-09
                          For: PB64131 KEYSTONE ENVIRONMENTAL LTD.
                                                                                    13: 44: 50
 Folio: 12108
                                                                                    Page
DOCUMENTS
         SERVICE PIT HYDROCARBON CONTAMINATION REMEDIATION. ADDRESSED TO THE
         BC MINISTRY OF EN
                Authored: OCT 21, 1993
                                                            Submitted: OCT 28, 2010
 Parti ci pants
                                                               Rol e
 MTR CONSULTANTS LTD. (VANCOUVER, B.C.)
                                                               AUTHOR
 Title: LETTER: RE: FORMER BURLINGTON NORTHERN RAILYARD - VANCOUVER, BC, OIL AND GREASE CONTAMINATED SOILS. ADDRESSED TO THE BC MINISTRY OF
         ENVIRONMENT, LANDS
                Authored: 0CT 15, 1993
                                                            Submitted: OCT 28, 2010
                                                               Rol e
 Parti ci pants
 MTR CONSULTANTS LTD. (VANCOUVER, B.C.)
                                                               AUTHOR
Title: LETTER: RE: FORMER BURLINGTON NORTHERN RAILYARD - VANCOUVER, BC, INITIAL GENERATOR REGISTRATION. ADDRESSED TO THE BC MINISTRY OF
         ENVIRONMENT, LANDS AN
                Authored: SEP 21, 1993
                                                            Submitted: OCT 28, 2010
 Parti ci pants
                                                               Role
 MINISTRY OF ENVIRONMENT
                                                               AUTHOR
 Title: LETTER: RE: FORMER BURLINGTON NORTHERN RAILYARD - VANCOUVER, BC, REMOVAL AND TREATMENT OF OIL AND GREASE CONTAMINATED SOIL. ADDRESSED
         TO THE BC MINIS
                Authored: SEP 17, 1993
                                                            Submitted: OCT 28, 2010
 Parti ci pants
                                                               Rol e
 MTR CONSULTANTS LTD. (VANCOUVER, B.C.)
                                                               AUTHOR
 TITLE: LETTER: RE: BURLINGTON NORTHERN RAIL STATION STREET RAILYARD,
         VANCOUVER, BC. ADDRESSED TO MTR CONSULTANTS LTD.
                Authored: SEP 13, 1993
                                                            Submitted: OCT 28, 2010
 Parti ci pants
                                                               Rol e
 MINISTRY OF ENVIRONMENT
                                                               AUTHOR
 TITLE: LETTER: RE: FORMER BURLINGTON NORTHERN RAILYARD - VANCOUVER, BC,
         PROPOSED SUBDIVISION PLAN AND PARKLAND DEDICATION. ADDRESSED TO
         PERMITS AND LICENSES,
                Authored: AUG 18, 1993
                                                            Submitted: OCT 28, 2010
 Parti ci pants
                                                               Rol e
```

Page 6

Si teRegDetai I Si tel D12143Lat49Long123. txt MTR CONSULTANTS LTD. (VANCOUVER, B.C.) AUTHOR Title: LETTER: RE: FORMER BURLINGTON NORTHERN RAILYARD - VANCOUVER, BC, PROPOSED SUBDIVISION PLAN AND PARKLAND DEDICATION. ADDRESSED TO: TO BC ENVIRONMENT -Authored: AUG 13, 1993 Submitted: OCT 28, 2010 Parti ci pants Rol e MTR CONSULTANTS LTD. (VANCOUVER, B.C.) **AUTHOR** Title: LETTER: RE: FORMER BURLINGTON NORTHERN RAILYARD, VANCOUVER, BC. ADDRESSED TO BC ENVIRONMENT? ENVIRONMENTAL PROTECTION
Authored: JUL 26, 1993 Submitted: C Submitted: OCT 28, 2010 Rol e Parti ci pants As of: MAY 04, 2014 BC Online: Site Registry 14-05-09 For: PB64131 KEYSTONE ENVIRONMENTAL LTD. 13: 44: 50 Folio: 12108 Page **DOCUMENTS** MTR CONSULTANTS LTD. (VANCOUVER, B.C.) **AUTHOR** Title: LETTER: RE: FORMER BURLINGTON NORTHERN RAILYARD, VANCOUVER, BC (YOUR FILE REFERENCE 2650-20/57). ADDRESSED TO BC ENVIRONMENT -ENVIRONMENTAL PROTECTIO Authored: JUN 23, 1993 Submitted: OCT 28, 2010 Parti ci pants Rol e MTR CONSULTANTS LTD. (VANCOUVER, B.C.) **AUTHOR** LETTER: RE: FORMER BURLINGTON NORTHERN RAIL STATION STREET RAILYARD, VANCOUVER, BC (YOUR FILE REFERENCE 2650-20/ 57). ADDRESSED TO MTR CONSULTANTS LT Authored: APR 17, 1993 Submitted: OCT 28, 2010 Parti ci pants Rol e MINISTRY OF ENVIRONMENT **AUTHOR** - - - -Title: LETTER: RE: BURLINGTON NORTHERN RAIL STATION STREET RAILYARD, VANCOUVER, BC, PHASE III ? ENVIRONMENTAL ASSESSMENT. ADDRESSED TO MTR CONSULTANTS LTD Authored: MAY 22, 1992 Submitted: OCT 28, 2010 Parti ci pants Rol e MINISTRY OF ENVIRONMENT **AUTHOR** Title: REPORT: BURLINGTON NORTHERN RAIL STATION STREET RAILYARD, PHASE III -ENVI RONMENTAL ASSESSMENT Authored: JAN 01, 1992 Submitted: OCT 28, 2010 Rol e Parti ci pants PITEAU ASSOCIATES ENGINEERING LTD. **AUTHOR** SUSPECTED LAND USE Description: PETRO. PROD., /PRODUCE WATER STRG ABVEGRND/UNDERGRND TANK Notes: INSERTED FOR SITE PROFILE DATED 2010-03-11(described on Site Profile dated 10-03-11)

Page 7

SiteRegDetailSitelD12143Lat49Long123.txt Description: RAIL CAR/LOCOMOTIVE MAINTENANCE/CLEAN/SALVAGE INCL RAILYARD Notes: INSERTED FOR SITE PROFILE DATED 2010-03-11(described on Sit Profile dated 10-03-11)	DS te
PARCEL DESCRIPTIONS	= = =
Date Added: MAR 11, 2010 Crown Land PIN#: LTO PID#: 025467743 Crown Land File#: Land Desc: LOT G DISTRICT LOTS 196 AND 2037 GROUP 1 NEW WESTMINSTER DISTRICT PLAN BCP802	
CURRENT SITE PROFILE INFORMATION (Sec. III to X) Site Profile Completion Date: MAR 11	= = = 1, 2010
Local Authority Received: MAR 11, 2010	
	4-05-09 3: 44: 50
	aae 8
Site Registrar Received: Entry Date:	
III COMMERCIAL AND INDUSTRIAL PURPOSES OR ACTIVITIES ON SITE Schedule 2 Reference Description F7 PETRO. PROD., /PRODUCE WATER STRG ABVEGRND/UNDERGRND T G6 RAIL CAR/LOCOMOTIVE MAINTENANCE/CLEAN/SALVAGE INCL RAI	
AREAS OF POTENTIAL CONCERN Petroleum, solvent or other polluting substance spills to the environment greater than 100 litres?	NO NO NO
FILL MATERIALS Fill dirt, soil, gravel, sand or like materials from a contaminated site or from a source used for any of the activities listed under Schedul 2?	e YES t
WASTE DISPOSAL (QUESTIONS AS OF JANUARY 1 2009) Materials such as household garbage, mixed municipal refuse, or demoliti debris?	
. 250	

Waste or byproducts such as tank bottoms, residues, sludge, or flocculation precipitates from industrial processes or wastewater treatment?	as NO
TANKS OR CONTAINERS USED OR STORED, OTHER THAN TANKS USED FOR RESIDENTIAL HEATING FUEL Underground fuel or chemical storage tanks other than storage tanks for compressed gases?	
For: PB64131 KEYSTONE ENVIRÓNMENTAL LTD. 13	4-05-09 3: 44: 50 age 9
HAZARDOUS WASTES OR HAZARDOUS SUBSTANCES	
PCB-containing electrical transformers or capacitors either at grade, attached above ground to poles, located within buildings, or stored?. Waste asbestos or asbestos containing materials such as pipe wrapping, blown-in insulation or panelling buried?	NO t
attached above ground to poles, located within buildings, or stored?. Waste asbestos or asbestos containing materials such as pipe wrapping, blown-in insulation or panelling buried? Paints, solvents, mineral spirits or waste pest control products or pest control product containers stored in volumes greater than 205 litres? LEGAL OR REGULATORY ACTIONS OR CONSTRAINTS Government orders or other notifications pertaining to environmental conditions or quality of soil, water, groundwater or other	NO t ? NO YES

End of Detail Report

APPENDIX D GENERAL TERMS AND CONDITIONS FOR SERVICES

KEYSTONE ENVIRONMENTAL LTD. GENERAL TERMS AND CONDITIONS FOR SERVICES

The terms and conditions set forth below govern all work or services requested by CLIENT as described and set forth in the Proposal of Keystone Environmental Ltd. ("Keystone") attached hereto, any Purchase Order issued by CLIENT or Agreement between Keystone and CLIENT. The provisions of said Proposal or Agreement govern the scope of services to be performed, including the time schedule, compensation, and any other special terms. The terms and conditions contained herein shall otherwise apply expressly stated to the contract or inconsistent with said Proposal or Agreement.

1. COMPENSATION

Unless otherwise stated in Keystone's Proposal, CLIENT agrees to compensate Keystone in accordance with Keystone's published rate schedules in effect on the date when the services are performed. Copies of the schedules currently in effect are attached hereto. Keystone's rate schedules are revised periodically; and Keystone will notify CLIENT of any such revisions and the effective date thereof which shall not be less than thirty (30) days after receipt of such notice. As to those services for which no schedule exists, Keystone shall be compensated on a time and materials basis as set forth in any change order executed pursuant to this Agreement.

2. PAYMENT

Unless otherwise agreed to in writing, invoices will be submitted monthly. Payment of invoices is due within thirty (30) days of receipt of the invoice. Invoices not paid within (30) days after date of receipt shall be deemed delinquent.

3. INDEPENDENT CONTRACTOR

Keystone shall be an independent contractor and shall be fully independent in performing the services of work and shall not act or hold themselves out as an agent, servant or employee of CLIENT.

4. KEYSTONE'S LIMITED WARRANTY

The sole and exclusive warranty which Keystone makes with respect to the services to be provided in the performance of the work is that they shall be performed in accordance with generally accepted professional practices and CLIENT's standards and specifications to the extent accepted by Keystone and shall be performed in a skillful manner.

In the event Keystone's performance of work, or any portion thereof, fails to conform with the above stated limited warranty, Keystone shall, at its discretion and its expense, proceed expeditiously to reperform the nonconforming, or upon the mutual agreement of the parties, refund the amount of compensation paid to Keystone for such nonconforming work. In no event shall Keystone be required to bear the cost of gaining access in order to perform its warranty obligations.

5. **CLIENT WARRANTY**

CLIENT warrants that: it will provide to Keystone all available information regarding the site, structures, facilities, buildings, and land involved with the work and that such information shall be true and correct: it will provide all licences and permits required for the work; that all work which it performs shall be in accordance with generally accepted professional practices; and it has title to or will provide right of entry or access to all property necessary to perform the work.

6. INDEMNITY

- a. Subject to the limitations of Section 7 below, Keystone agrees to indemnify, defend and hold harmless CLIENT (including its officers, directors, employees and agents) from and against any and all losses, damages, liabilities, claims, suits, and the costs and expenses incident thereto (including legal fees and reasonable costs of investigation) which any or all of them may hereafter incur, become responsible for or pay out as a result of death or bodily injuries to any person, destruction or damage to any property, private or public, contamination or adverse effects on the environment or any violation or alleged violation of governmental laws, regulations, or orders, to the extent caused by or arising out of: (i) Keystone's errors or omissions or (ii) negligence on the part of Keystone in performing services hereunder.
- b. CLIENT agrees to indemnify and hold harmless Keystone (including its officers, directors, employees and agents) from and against any and all losses, damages, liabilities, claims, suits and the costs and expenses incident thereto (including legal fees and reasonable costs of investigation) which any or all of them may hereafter incur, become responsible for or pay out as a result of death or bodily injuries to any person, destruction or damage to any property, private or public, contamination or adverse effects on the environment or any violation or alleged violation of governmental laws, regulations, or orders,

caused by, or arising out of in whole or in part: (i) any negligence or willful misconduct of CLIENT, (ii) any breach of CLIENT of any warranties or other provisions hereunder, (iii) any condition including, but not limited to, contamination existing at the site, or (iv) contamination of other property arising or alleged to arise from or be related to the site provided, however, that such indemnification shall not apply to the extent any losses, damages, liabilities or expenses result from or arise out of: (i) any negligence or willful misconduct of Keystone; or(ii) any breach of Keystone of any warranties hereunder.

7. <u>LIMITATION OF LIABILITY</u>

Keystone's total liability, whether arising from or based upon breach of warranty, breach of contract, tort, including Keystone's negligence, strict liability, indemnity or any other cause of basis whatsoever, is expressly limited to the limits of Keystone's insurance coverage. This provision limiting Keystone's liability shall survive the termination, cancellation or expiration of any contract resulting from this Proposal and the completion of services thereunder. After three (3) years of completion of Keystone's services, any legal costs arising to defend third party claims made against Keystone in connection with the project defined in the Proposal or Agreement will be paid in full by the CLIENT.

8. INSURANCE

Keystone, during performance of this Agreement, will at its own expense carry Worker's Compensation Insurance within limits required by law; Comprehensive General Liability Insurance for bodily injury and for property damage; Professional Liability Insurance for errors omissions and negligence; and Comprehensive Automobile Liability Insurance for bodily injury and property damage. At CLIENT'S request, Keystone shall provide a Certificate of Insurance demonstrating Keystone's compliance with this section. Such Certificate of Insurance shall provide that said insurance shall not be cancelled or materially altered until at least ten (10) days after written notice to CLIENT.

9. CONFIDENTIALITY

Each party shall retain as confidential all information and data furnished to it by the other party which relate to the other party's technologies, formulae, procedures, processes, methods, trade secrets, ideas, improvements, inventions and/or computer programs, which are designated in writing by such other party as confidential at the time of transmission and are obtained or acquired by the receiving party in connection with work or services performed subject to this Proposal or Agreement, and shall not disclose such information to any third party.

However, nothing herein is meant to prevent nor shall it be interpreted as preventing either Keystone or CLIENT from disclosing and/or using said information or data; (i) when the information or data is actually known to the receiving party before being obtained or derived from the transmitting party; or (ii) when the information or data is generally available to the public without the receiving party's fault; or (iii) where the information or data is obtained or acquired in good faith at any time by the receiving party from a third party who has the right to disclose such information or data; or (iv) where a written release is obtained by the receiving party from the transmitting party; or (v) as required by law.

10. PROTECTION OF INFORMATION

Keystone specifically disclaims any warranties expressed or implied and does not make any representations regarding whether any information associated with conducting the work, including the report, can be protected from disclosure in responses to a request by a federal, provincial or local government agency, or in response to discovery or other legal process during the course of any litigation involving Keystone or CLIENT. Should Keystone receive such request from a third party, it will immediately advise CLIENT.

11. FORCE MAJEURE

Neither party shall be responsible or liable to the other for default or delay in the performance of any of its obligations hereunder (other than the payment of money for services already rendered) caused in whole or in part by strikes or other labour difficulties or disputes; governmental orders or regulations; war, riot, fire, explosion; acts of God; acts of omissions of the other party; any other like causes; or any other unlike causes which are beyond the reasonable control of the respective party.

In the event of delay in performance due to any such cause, the time for completion will be extended by a period of time reasonably necessary to overcome the effect of the delay. The party so prevented from complying shall within a reasonable time of its knowledge of the disability advise the other party of the effective cause, the performance suspended or affected and the anticipated length of time during which performance will be prevented or delayed and shall make all reasonable efforts to remove such disability as soon as possible, except for labour disputes, which shall be solely within said party's discretion. The party prevented from complying shall advise the other party when the cause of the delay or default has ended, the number of days which will be reasonably required to compensate for the period of suspension and the date when performance will be resumed. Any additional costs or expense accruing or arising from the delaying event shall be solely for the account of the CLIENT.

12. NOTICE

Any notice, communication, or statement required or permitted to be given hereunder shall be in writing and deemed to have been sufficiently given when delivered in person or sent by facsimile, wire, or certified mail, return receipt requested, postage prepaid, to the address of the party set forth below, or to such address for either party as the party may be written notice designate.

13. <u>ASSIGNMENT/SUBCONTRACT</u>

Neither party hereto shall assign this Agreement or any part thereof or any interest therein without the prior written approval of the other party hereto except as herein otherwise provided. Keystone shall not subcontract the performance of any work hereunder without the written approval of CLIENT. Subject to the foregoing limitation, the Agreement shall inure to the benefit of and be binding upon the successors and permitted assigns of the parties hereto.

14. ESTIMATES

To the extent the work requires Keystone to prepare opinions of probable cost, for example, opinions of probable cost for the cost of construction, such opinions shall be prepared in accordance with generally accepted engineering practice and procedure. However, Keystone has no control over construction costs, competitive bidding and market conditions, costs of financing, acquisition of land or rights-of-way and Keystone does not guarantee the accuracy of such opinion of probable cost as compared to actual costs or contractor's bid.

15. <u>DELAYED AGREEMENTS AND OBLIGATIONS</u>

The performance by Keystone of its obligations under this Agreement depends upon the CLIENT performing its obligations in a timely manner and cooperating with Keystone to the extent reasonably required for completion of the Work. Delays by CLIENT in providing information or approvals or performing its obligations set forth in this Agreement may result in an appropriate adjustment of contract price and schedule.

16. CONSTRUCTION PHASE

To the extent the work is related to or shall be followed by construction work not performed by Keystone, Keystone shall not be responsible during the construction phase for the construction means, methods, techniques, sequences or procedures of construction contractors, or the safety precautions and programs incident thereto, and shall not be responsible for the construction contractor's failure to perform the work in accordance with the contract documents. Keystone will not direct, supervise or control the work of the CLIENT'S contractors or the CLIENT'S subcontractors.

17. DOCUMENTATION, RECORDS, AUDIT

Keystone when requested by CLIENT, shall provide CLIENT with copies of all documents relating to the service(s) of work performed. Keystone shall retain true and correct records in connection with each service and/or work performed and all transactions related thereto and shall retain all such records for twelve (12) months after the end of the calendar year in which the last service pursuant to this Agreement was performed. CLIENT, at its expense and upon reasonable notice, may from time to time during the term of this Agreement, and at any time after the date the service(s) were performed up to twelve (12) months after the end of the calendar year in which the last service(s) were performed, audit all records of Keystone in connection with all costs and expenses which it was invoiced.

18. REPORTS, DOCUMENTS AND INFORMATION

All field data, field notes, laboratory test data, calculations, estimates and other documents prepared by Keystone in performance of the work shall remain the property of Keystone. If required as part of the work, Keystone shall prepare a written report addressing the items in the work plan including the test results. Such report shall be the property of CLIENT, Keystone shall be entitled to retain three (3) copies of such report for its internal use and reference.

All drawings and documents produces under the terms of this Agreement are the property of Keystone, and cannot be used for any reason other than to bid and construct the project as described in the Proposal or Agreement.

19. LIMITED USE OF REPORT

Any report prepared as part of the work will be prepared solely for the internal use of CLIENT. Unless otherwise agreed by Keystone and CLIENT, parties agree that third parties are not to rely upon the report.

20. SAMPLE MANAGEMENT

Ownership of all samples obtained by Keystone from the project site is maintained by the CLIENT. Keystone will store such samples in a professional manner in a secure area for the period of time necessary to complete the project. Upon completion of the project, Keystone will return any unused samples or

portions thereof to the CLIENT or at Keystone's option dispose of the samples in a lawful manner and bill the CLIENT for all costs related thereto. Keystone will normally store samples for thirty (30) days. Written notice will be given to the CLIENT before finally disposing of samples.

21. ACKNOWLEDGMENT AND RECOGNITION OF RISK

CLIENT recognizes and accepts the work to be undertaken by Keystone may involve unknown undersurface conditions and hazards. CLIENT further recognizes that environmental, geologic, hydrological, and geotechnical conditions can and may vary from those encountered by Keystone at the times and locations where it obtained data and information and that limitations on available data may result in some uncertainty with respect to the interpretation of these conditions. CLIENT recognizes that the performance of services hereunder or the implementation of recommendations made by Keystone in completing the work required may alter the existing site conditions and affect the environment in the site area.

Unknown undersurface conditions, including underground utility services, tanks, pipes, cables and other works (Underground Works) may be present at the site. Keystone will conduct utility locates to obtain available information regarding the location of Underground Works in accordance with industry practice. Utility locates are not a guarantee of the location of, or existence of, Underground Works and as a result damage to Underground Works may occur. Keystone relies on utility locates and Client provided "asbuilt" and record drawings to determine the location and existence of Underground Works. CLIENT recognizes that the use of utility locates is not a guarantee or warranty that Underground Works may not be damaged and acknowledges that Keystone is not responsible for any damage caused to Underground Works or the repair of such damage or any resulting or related damage and any costs related to such damage.

22. <u>DISPOSAL OF CONTAMINATED MATERIAL</u>

It is understood and agreed that Keystone is not, and has no responsibility as, a generator, operator or storer of pre-existing hazardous substances or wastes found or identified at work sites. Keystone shall not directly or indirectly assume title to such hazardous or toxic substances and shall not be liable to third parties.

CLIENT will indemnify and hold harmless Keystone from and against all incurred losses, damages, costs and expenses, including but not limited to attorneys' fees, arising or resulting from actions brought by third parties alleging or identifying Keystone as a generator, operator, storer or owner of pre-existing hazardous substances or wastes found or identified at work sites.

23. SUSPENSION OR TERMINATION

In the event the work is terminated or suspended by CLIENT prior to the completion of the services contemplated hereunder, Keystone shall be paid for: (i) the services rendered to the date of termination or suspension, (ii) the demobilization costs, and (iii) the costs incurred with respect to noncancelable commitments.

24. GOVERNING LAW

This Agreement shall be governed by and interpreted pursuant to the laws of the Province of British Columbia.

25. <u>HEADINGS AND SEVERABILITY</u>

Any heading preceding the text of sections hereof is inserted solely for convenience or reference and shall not constitute a part of the Agreement and shall not effect the meanings, context, effect or construction of the Agreement. Every part, term or provision of this Agreement is severable from others. Notwithstanding any possible future finding by duly constituted authority that a particular part, term or provision is invalid, void or unenforceable, this Agreement has been made with the clear intention that the validity and enforceability of the remaining parts, terms and provision shall not be affected thereby.

26. ENTIRE AGREEMENT

The terms and conditions set forth herein constitute the entire Agreement and understanding or the parties relating to the provision of work or services by Keystone to CLIENT, and merges and supersedes all prior agreements, commitments, representation, writings, and discussions between them and shall be incorporated in all work orders, purchase orders and authorization unless otherwise so stated therein. The terms and conditions may be amended only by written instrument signed by both parties.

August 1, 2014

Mr. Victor Brent Louie Le Kiu Holdings Ltd. 456 Prior Street Vancouver, BC V6A 2E5

Dear Mr. Louie:

Re: DRAFT Report of Findings – Phase II Environmental Site Assessment

370 and 456 Prior Street, Vancouver, BC

Project No. 12108 (2.0)

This letter report presents the draft findings of a KEYSTONE ENVIRONMENTAL[™] Phase II Environmental Site Assessment (ESA) prepared for the properties located at 370 and 456 Prior Street, in the City of Vancouver, BC (the Site). It is understood that this report will be used in conjunction with the potential divestment of the Site.

1. BACKGROUND

This Phase II ESA was performed subsequent to a Phase I ESA conducted by Keystone Environmental Ltd. (Keystone Environmental) in May 2014. The Site consists of rectangular lot (370 Prior Street) and one irregularly shaped lot (456 Prior Street) located on the south side of Prior Street. One off-Site property (410 Prior Street, owned by the City of Vancouver) is located between the two portions of the Site (370 and 456 Prior Street).

The Phase I ESA indicated that the Site was occupied by a former shingle manufacturer in circa 1910. From the early 1920s, or earlier, to the mid-1940s, a former building was located on the west portion of the Site at 436 Prior Street. Historical records indicated that the former building was occupied by a contractor's warehouse (Grant Smith & Co.) and a former logging supply operation (F&F Equipment). In the late 1940s, the former building was removed and the west and central portions of the existing warehouse were constructed. The east portion of the existing warehouse was added in the late 1950s/early 1960s. A former rail spur was located on the south perimeter of the Site, adjacent to the south of the existing warehouse, from the late 1940s to the mid-1970s. The rail spur was removed in the late 1970s, and the Site has remained relatively unchanged since the 1970s.

The Phase I ESA identified the following areas of potential environmental concern (APECs):

 APEC 1 – Fill Material of unknown origin and quality was used to infill the former creeks on the southern portion of the Site.

- APEC 2 Potential for heating oil tanks. During the Phase I ESA Site reconnaissance, two
 cut-off metal pipes (indicative potential vent pipes) and a circular metal cover (indicative of a
 fill port) were observed on the northwest side of the Site building.
- **APEC 3** Off-Site former smelting and metal operations at 310 Prior Street from the 1930s to the 1960s (adjacent to the west of the Site).
- **APEC 4** Off-Site former ink manufacturing operation at 496 Prior Street from the 1930s to the 1960s (adjacent to the east of the Site).
- APEC 5 Off-Site former rail yard at 1002 Station Street from the 1920s to the 1980s (adjacent to the south-southwest of the Site).

2. STUDY LIMITATIONS

Findings presented in this report are based upon the results of a field investigation including soil and groundwater sample analyses. Geologic observations and analytical results reflect conditions encountered at specific test locations. Site conditions (geologic, hydrogeological, and chemical characterization) may vary from that extrapolated from the data collected during this investigation. Consequently, while findings and conclusions documented in this report have been prepared in a manner consistent with that level of care and skill normally exercised by other members of the environmental science and engineering profession practising under similar circumstances in the area at the time of the performance of the work, this report is not intended, nor is it able to provide a totally comprehensive review of present or past site environmental conditions.

This report has been prepared solely for the internal use of Le Kiu Holdings Ltd., pursuant to the agreement between Keystone Environmental Ltd. and Le Kiu Holdings Ltd. A copy of the general terms and conditions associated with this agreement is attached. By using the report, Le Kiu Holdings Ltd. agrees that they will review and use the report in its entirety. Any use which other parties make of this report, or any reliance on or decisions made based on it, are the responsibility of such parties. Keystone Environmental Ltd. accepts no responsibility for damages, if any, suffered by other parties as a result of decisions made or actions based on this report.

3. APPLICABLE STANDARDS

The applicable provincial regulations used for comparison of analytical results are contained in the following documents:

- Environmental Management Act (EMA), ([SBC 2003], Chapter 53 assented to March 23, 2003)
- Contaminated Sites Regulation (CSR), 375/96 O.C. 1480/96 including amendments up to B.C. Reg. 375/96 O.C. 1480/96 and M271/2004, includes amendments up to B.C. Regulation 4/2014, January 31, 2014
- Hazardous Waste Regulation (HWR) (BC Reg. 63/88 O.C. 268/88, including amendments up to B.C. Reg. 63/2009, April 1, 2009)

3.1 Soil Standards

The Contaminated Sites Regulation (CSR) provides generic and matrix numerical soil standards for different land use categories. The matrix numerical soil standards provide standards for potential contaminants based on several site-specific factors (e.g., intake of contaminated soil, toxicity to soil invertebrates and plants). To determine the appropriate standard for a contaminant, the applicable factors for a site are first selected. The lowest standard of those for applicable factors for the site is then defined as the standard that will apply.

The Site is current zoned and used for industrial purposes. Future use of the Site may include commercial uses; therefore the CSR standards for industrial land use (IL) and commercial land use (CL) have been applied.

3.2 Groundwater Standards

The CSR contains requirements to ensure that groundwater at a site is suitable for current and future uses and is of adequate quality to protect adjacent water uses.

Aguatic Water Use Standards – Fresh and Marine Water

The CSR Aquatic Life Water Use (AW) standards apply to groundwater at sites that are within 500 m or less of a surface water body containing aquatic life, or where there is the potential for contaminated groundwater to reach within 500 m of a surface water body containing aquatic life. The east end of False Creek (the closest surface water body) is located approximately 550 m to the west southwest of the Site at its closest point. False Creek is a marine aquatic environment; therefore, Marine (AW_M) aquatic life has been applied to the Site.

Drinking Water Use Standards

The evaluation of whether drinking water (DW) standards are applicable is conducted in two stages, first for the current situation and then for the potential future situation. The answer to both the current and the future evaluation must be "no" to eliminate the application of the DW standards to the Site.

<u>Current Use:</u> For current use evaluation, the CSR DW standards are applicable at a site where the groundwater or surface water at or near the site (within 500 m of the site or the leading edge of a groundwater contamination source or, if groundwater flow direction has been demonstrated, 100 m up-gradient or 500 m down-gradient of the site or contamination source) is currently used for drinking water.

<u>Future Use – Part 1:</u> The potential for the site to support drinking water use is determined under this scenario. If there is a suitable aquifer (hydraulic conductivity greater than 1 x 10⁻⁶ m/s and aquifer yield greater than 1.3 L/min) present then there is the potential for DW standards to apply and further evaluation is required. If there is not a suitable aquifer present, then DW standards do not apply.

<u>Future Use – Part 2:</u> If the answer for either of the following two questions is "yes," then DW standards do not apply to the site:

- If the natural quality of groundwater in the aquifer is unsuitable for drinking water use (total dissolved solids (TDS) are greater than 4,000 mg/L, or is contained within organic soils or muskeg)
- If there is a confining geological unit that adequately protects the aquifer (greater than or equal to 5 m thick, bulk hydraulic conductivity less than or equal to 1 x 10⁻⁷ m/s, relatively uniform and free of fractures, continuous across the extent and predicted migration pathway of the shallow subsurface contamination, and the lower 5 m has not been penetrated by contamination from the above units)

The BC Water Resource Atlas, which displays groundwater management information for the Province of BC, was accessed on May 9, 2014. A search was conducted to determine if groundwater wells were located within 500 m of the Site. Groundwater water wells were not identified within the vicinity of the Site.

Based on the observed geology at the Site, the hydraulic conductivity for the water-bearing units (sandy silt and gravel) at the Site is estimated to be greater than 1 x 10⁻⁶ m/s. A more detailed hydrogeologic investigation may rule out the applicability of CSR DW standards, however, based on the current information, DW standards are considered to be applicable to the Site. In accordance with the CSR Stage 8 amendments in January 2013, the DW standards for iron and manganese are not considered to be applicable to the Site.

Irrigation and Livestock Water Use Standards

Irrigation (IW) and livestock (LW) watering water use standards apply to groundwater located at sites with agricultural land use or are located within a provincial Agricultural Land Reserve (ALR), unless the geological unit where contamination occurs has a hydraulic conductivity less than 10⁻⁶ m/s or if wells or points of diversion used for livestock watering or irrigation purposes are located greater than 500 m of the Site.

The Site is not located within the ALR. Agricultural land and operations, and irrigation and livestock water wells were not identified within 500 m of the Site. Therefore, the IW and LW standards are not considered applicable to the Site.

4. SCOPE OF WORK

This Phase II ESA was conducted in July 2014. The scope of work consisted of the following tasks:

- Conducting a utility search through BC One Call to obtain information on the location of underground utilities in the area of the investigation.
- Performing an electromagnetic (EM) and Ground Penetrating Radar (GPR) survey at the Site to identify the potential presence of underground utilities at the investigation locations and underground storage tanks (USTs) on the Site.

- Drilling seven boreholes on the Site and constructing them as groundwater monitoring wells (MW14-1 to MW14-7) with soil vapour attachments (SV14-1 to SV14-7)¹.
- Collecting soil samples and groundwater samples from the boreholes/monitoring wells and submitting selected samples for laboratory analyses.
- Documenting the results of the investigation in this letter report.

5. INVESTIGATIVE PROGRAM

The following table summarized the work plan, the corresponding investigative locations and the associated potential constituents of concern (PCOCs). The investigative locations are shown on Figure 1.

Table 5-1 Work Plan and Investigative Locations

Area of Potential	Investigation	Type of Analy	ses Proposed
Environmental Concern	Location(s)	Soil	Groundwater
On-Site APEC #1	MW14-1, MW14-2,	LEPH, HEPH, PAH,	LEPHw, PAH, and
Fill material on the southern portion of the Site ²	MW14-6 MW14-7	and metals	metals
On-Site APEC #2	EM/GPR Scan and	LEPH, HEPH, PAH,	LEPHw, PAH, BTEX,
Potential heating oil and/or other USTs	MW14-4	BTEX, VPH	VPHw, metals
Off-Site APEC #3	MW14-5		LEPHw, PAH, VOC,
Former smelting and metal operations at 310 Prior Street		N/A	VPHw, and metals
Off-Site APEC #4			VOC and VPHw,
Former ink manufacturing operation at 496 Prior Street	MW14-2, MW14-3	N/A	metals
Off-Site APEC #5	MW14-1, MW14-6, MW14-7	LEPH, HEPH, PAH,	LEPHw, PAH, BTEX,
Former rail yard at 1002 Station Street)		and metals	VOC, VPHw, metals, and chlorophenols

APEC – Area of Potential Environmental Concern BTEX – Benzene, Toluene, Ethylbenzene and Xylenes

LEPHw – Light Extractable Petroleum Hydrocarbons

MTBE - Methyl tertiary-butyl ether

EM – Electron-magnetic

GPR - Ground Penetrating Radar

MW - Monitoring Well

PAH – Polycyclic Aromatic Hydrocarbons

UST – Underground Storage Tank

VOC - Volatile Organic Compounds

VPHw - Volatile Petroleum Hydrocarbons

² With the exception of MW14-3, fill material was observed during of all of the boreholes.

Soil vapour samples were not collected as part of this investigation; however, they are available for future sampling (if required).

5.1 Electro-magnetic Survey and Ground Penetrating Radar Survey

Copies of available utility drawings from BC One Call were obtained prior to drilling at the Site. A utility locator, Quadra Utility Locating Ltd. (Quadra), visited the Site with Keystone Environmental on July 9, 2014 to identify the potential presence of underground storage tanks on the Site and the presence of underground utilities in the vicinity of the proposed investigation locations prior to the commencement of drilling.

5.2 Borehole Drilling and Soil Sampling

Drilling was performed on July 10 and 11, 2014 by Uniwide Drilling Company Ltd. (Uniwide) of Burnaby, BC. A truck-mounted portable drill rig equipped with solid and hollow stem augers was used to advance each investigative location. Drilling was completed to depths of approximately 4.6 m below grade (mbg).

An attempt was made to use hollow stem augers; however, soil conditions were not favourable for the split spoon sampling methodology, as the gravel and wood waste debris content encountered in the initial fill unit limited the soil retrieval capability with this method. Auger drilling was completed using 1.5 m long interconnecting solid stem steel augers. Upon retrieval of the augers from the drill holes, approximately 1 cm of soil was removed from the outer edge of the auger flights to expose fresh soil. The soil stratigraphy was then logged and sample intervals selected. Soil samples were collected directly from the solid stem augers.

Soil sample were collected at approximately 0.8 m intervals in each of the seven boreholes. A portion of each soil sample was placed into two labelled 125 millilitres (mL) laboratory-supplied glass jars with minimal headspace and secured with Teflon® lids. Each sample was collected wearing new nitrile gloves to reduce the potential for cross contamination. A portion of the soil sample was placed in a Ziploc® polyethylene bag for field screening headspace measurements using a portable photoionization detector (MiniRAE) calibrated with isobutylene gas. This instrument cannot be used to directly quantify the concentrations of volatile constituents as determined by the laboratory but assists in sample field screening prior to sample selection for laboratory analysis.

Soil samples were selected for analyses based on field observations and soil headspace measurements. Duplicate soil samples were also collected at an approximate frequency of one duplicate sample for each 10 soil samples collected. Soil samples were placed in a chilled cooler and transported to Maxxam Analytics Inc. (Maxxam) of Burnaby, BC under standard chain of custody procedures.

5.3 Monitoring Well Construction and Groundwater Sampling

The monitoring wells were constructed using hollow stem augers to remove sloughed soils and to provide a uniform filter sand pack thickness between the well screen and borehole walls. The monitoring well screen and casing pipe was lowered into the annulus of the hollow stem auger. Annular materials (filter sand and bentonite) were introduced to the hollow-stem auger as the auger was being slowly removed from the borehole. The depth of emplacement of the monitoring well screen was dependent on the depth of the apparent water table at each location and within specific strata to be assessed. The intent was to have the well screen intersect the groundwater table.

The monitoring well screens were 1.5 m long and had 0.25 mm slot width. The well pipe and screen were composed of 0.05 m diameter schedule 40 PVC. The solid PVC riser pipes extended from the top of the screen to the well head which was sealed with a J-Plug. Filter sand was placed as a filter pack around the well screen and to at least 0.3 m above the top of the screen. To provide a seal above the sand pack and reduce the potential for vertical migration of groundwater or infiltration of surface water into the well, bentonite chips were placed above the sand pack to a depth approximately 0.3 m below the surface grade. The monitoring wells were finished with flush mounted road boxes.

Following construction, the monitoring wells were monitored for water levels and well headspace vapour levels. The wells were developed on July 14, 2014, in preparation for groundwater sampling, by surging with high density polyethylene (HDPE) inertial lift tubing, one way valve, and a surge blocks prior to withdrawing a minimum of six times the well volume of water from the well, or developing the well to a dry condition three consecutive times.

Groundwater sampling was conducted on July 15, 2014 by low flow sampling and inertial lift sampling techniques. A peristaltic pump with new, dedicated HDPE and silicone tubing was used with low flow sampling techniques to collect samples for the analysis of light extractable petroleum hydrocarbons (LEPH_W), polycyclic aromatic hydrocarbons (PAH), volatile organic compounds (VOC), volatile petroleum hydrocarbons (VPHw), chlorinated phenols and dissolved metals. Inertial lift HDPE tubing and foot valve were used to collect samples for the analysis of volatile organic compounds/volatile petroleum hydrocarbons VOC/VPHw including benzene, toluene, ethylbenzene and xylenes (BTEX). Dissolved metals samples were field filtered using 0.45 micron and 0.2 micron filters in series. The dissolved metals samples were preserved with nitric acid (HNO₃) and dissolved mercury samples were preserved with hydrochloric acid (HCl).

Groundwater samples were placed in chilled coolers after sampling and for transport to Maxxam under standard chain of custody procedures.

5.4 Soil Vapour Well Installation

Soil vapour wells SV14-1 to SV14-7 were installed in the same boreholes as groundwater monitoring wells MW14-1 to MW14-7, respectively. The soil vapour wells were constructed using a dedicated 15 cm stainless steel mesh Geoprobe® vapour screen and ¼-inch nylon tubing. The probe was placed into the borehole at depths of approximately 0.6 to 0.9 mbg. The probe was held in the centre of the open borehole while a filter sand pack was installed in the annular space surrounding the probe while the hollow stem augers were withdrawn. Bentonite was installed above and below the soil vapour probe, and was hydrated with water during installation. A 0.3 to 0.6 m layer of bentonite chips was placed directly above and below the 30 cm sand pack and vapour probe to allow rapid hydration and a more effective seal within the soil vapour annular space.

The soil vapour wells were not sampled as part of this Phase II ESA; however, they will be available for use in further investigations, if necessary.

5.5 Quality Assurance/Quality Control

5.5.1 Field QAQC

Keystone Environmental employed field measures to confirm quality assurance and quality control (QA/QC) when performing both sample collection for laboratory analyses and general fieldwork.

To minimize the potential for cross-contamination of samples, the following procedures were used by Keystone Environmental:

- New gloves were used for each sample collected
- Tools were cleaned with Alconox[™] soap and distilled water between samples
- Samples were placed in laboratory-supplied containers suitable for the analysis
- Samples were labelled and stored in a chilled cooler while in the field and during transport to the laboratory
- Samples and field duplicates were collected during each of the soil and groundwater sampling events for quality control purposes. The samples were labelled and stored in a chilled coolers with the original samples while in the field and during transport to the laboratory.

Samples were collected and submitted for analysis under chain of custody documentation to Maxxam, Analytics in Burnaby, BC. Maxxam is a Canadian Association for Laboratory Accreditation (CALA) certified laboratory. Soil and groundwater analysis was conducted in accordance with MOE procedures, and the MOE-recommended laboratory QA/QC protocols were followed.

5.5.2 Laboratory QAQC

In addition to the field samples submitted for analyses, the laboratory initiated their own duplicate samples. The laboratory follows an internal QA/QC program which includes duplicate sample, sample blank, and spike analyses QA/QC and the results are presented on the attached laboratory certificates of analyses.

6. INVESTIGATIVE RESULTS

6.1 Ground Penetrating Radar (GPR) Scans

A GPR scan was conducted on July 9, 2014, in part to investigate the potential underground fuel storage tanks (USTs) on the Site and to identify other underground utilities in the proposed borehole locations. A subsurface anomaly approximately 3 m by 2 m, indicative of a UST, was observed during the GPR scan at the northwest corner of the Site building.

Underground utilities were not identified within 2 metres of the investigative locations.

6.2 Surficial Geology and Field Observations

The soil was classified from observations during drilling using the Unified Soil Classification System. The investigation locations are shown on Figure 1. The following is a general description of the stratigraphy encountered at the Site beneath concrete or asphalt at MW14-1 to MW14-4 on-Site.

Unit A: Brown, medium to coarse grained sand and gravel fill. This unit was moist to wet and contained brick fragments below the asphalt on the southeast side of the Site from approximately 0.15 mbg to 2.4 mbg.

Unit A was not observed at MW14-3 (northeast corner of the Site).

Unit B: Grey silty fine to medium grained sand with some gravel that was dense, and moist to wet. This unit was encountered beneath Unit A to a depth of approximately 3.6 mbg.

Unit C: Tan to light reddish-brown silty fine grained sand with trace gravel. This unit may grade to a greyish colour. This unit was encountered beneath Unit B to a depth of 4.6 mbg and is generally soft and wet but exhibit a denser form is some areas of the Site.

The following is a general description of the stratigraphy encountered at the Site beneath concrete or asphalt at MW14-5 to MW14-7 (west side of the Site):

Unit A: Dark brown to tan grey silty fine to medium grained sand with some gravel and wood waste including sawdust (fill). Brick fragments and metal debris was also observed. The unit in this area was moist to wet and ranges in depth from 1.8 to 3.8 mbg

Units B and C are similar to those described above for MW14-1 to MW14-4.

A hydrocarbon-like odour was encountered at MW14-4 (down-gradient of the UST) from approximately 0.6 mbg to 2.1 mbg within the fill unit (Unit A). The soil headspace vapour measurements from the soil samples collected ranged from 0.4 parts per million by volume (ppmv) at MW14-3 to 328 ppmv at MW14-4(1.5). The measured headspace vapours at MW14-4 (1.5) considered to be elevated and corresponds to the observed hydrocarbon-like odours at this location. This soil sample was submitted for hydrocarbon analysis. Hydrocarbon odours or staining was not observed at the remaining locations.

6.3 Hydrogeology and Field Observations

Groundwater is expected to follow regional topography flowing from areas of higher elevation to areas of lower elevation. Local groundwater flow direction may vary as a result of local conditions such as topography, geology and the presence of drainage channels and buried utilities, and is subject to confirmation with field measurements. The Site is located on approximately 550 m east-northeast of False Creek and the topography in the vicinity of the Site is relatively flat with little topographic relief. Based on the proximity to False Creek, the local groundwater flow direction is inferred to be to the southwest from the Site. Groundwater is anticipated to flow to the Site from the adjacent up-gradient residential properties located to the northeast of the Site (north side of Prior Street).

The depth to groundwater ranged from approximately 0.65 mbg at MW14-1 to 2.36 mbg at MW14-2. The well casing headspace measurements ranged from 0.7 parts per million by volume (ppmv) at MW14-6 to 81.2 ppmv at MW14-4. Hydrocarbon-like odours were observed at MW14-4; however, iridescent sheens were not observed in MW14-4 or in the remaining six monitoring wells. The measured headspace vapours at MW14-4 is considered to be elevated and corresponds to the hydrocarbon-like odour observed at this location.

6.4 Soil Analytical Results

A summary of the comparison to the standards is presented on the appended Tables 1 to 2 and on Figure 1. The laboratory certificates of analyses are attached at the end of the report. The following table summarizes the soil samples selected for laboratory analyses.

Table 6-1 Soil Samples Analyses

Sample	Analyses	Geological Unit
MW14-1 (0.6)	LEPH, HEPH, PAH, metals	Fill
MW14-2 (1.5)	LEPH, HEPH, PAH, metals	Fill
MW14-4 (1.5)	LEPH, HEPH, PAH, BTEX, VPH	Fill
MW14-5 (0.6) & Duplicate MW14-C	LEPH, HEPH, PAH, metals	Fill
MW14-6 (0.8)	LEPH, HEPH, PAH, metals	Fill
MW14-7 (3.1)	LEPH, HEPH, PAH, metals	Fill

BTEX – Benzene, Toluene, Ethylbenzene, Xylenes PAH – P HEPH – Heavy Extractable Petroleum Hydrocarbons VOC – V LEPH – Light Extractable Petroleum Hydrocarbons VPH – V

PAH – Polycyclic Aromatic Hydrocarbon VOC – Volatile Organic Compounds VPH – Volatile Petroleum Hydrocarbons

The concentrations of LEPH, HEPH, PAH, BTEX, VPH, and/or metals in the soil samples selected for analyses were less than the CSR CL/IL standards with the exception of the following:

Table 6-2 Soil Exceedances

Sample ID (depth in m)	Constituents Exceeding Applicable Standard (measured concentration)	CL/IL CSR Standard
MW14-4 (1.4)	Benzene (0.95 μg/g)	0.04 μg/g
MW14-5 (0.6)	Copper (285 <i>u</i> g/g)	100-250 <i>u</i> g/g*
	Lead (319 ug/g)	300-200 <i>u</i> g/g*
	Zinc (409 <i>u</i> g/g)	150-600 μg/g*
MW14-6 (0.8)	Zinc (435 <i>u</i> g/g)	150-600 μg/g*

^{*}pH dependent

6.5 Groundwater Analytical Results

Groundwater analytical results were compared to the CSR AW_{M_1} and DW standards. A summary of the comparison to the standards is presented on the appended Tables 3 to 6 and on Figure 2. The laboratory certificates of analyses are attached at the end of the report. The following table summarizes the groundwater samples selected for laboratory analyses.

Table 6-3 Groundwater Sample Analyses

Sample	Analyses
MW14-1	LEPHw, PAH, chlorinated phenols, dissolved metals
MW14-2	LEPHw, PAH, BTEX, VOCs, VPHw, dissolved metals
MW14-3	VOCs, VPHw
MW14-4	LEPHw, PAH, BTEX, VPHw, dissolved metals
MW14-5	LEPHw, PAH, BTEX, VOCs, VPHw, dissolved metals
MW14-6 (MW14-A duplicate)	LEPHw, PAH, chlorinated phenols, dissolved metals
MW14-7	LEPHw, PAH, chlorinated phenols, dissolved metals

BTEX – Benzene, Toluene, Ethylbenzene, Xylenes VOC – Volatile Organic Compounds

PAH – Polycyclic Aromatic Hydrocarbon VPH – Volatile Petroleum Hydrocarbons

LEPH – Light Extractable Petroleum Hydrocarbons

The concentrations of LEPHw, PAH, BTEX, VOC, VPHw, chlorinated phenols, and/or dissolved metals in the groundwater samples were less than the CSR AW_{M_i} and DW standards with the exception of the following:

Table 6-4 Groundwater Exceedances

Sample ID	Constituents Exceeding Applicable Standard (measured concentration)	CSR AW _M & DW Standard
MW14-2	Benzo(a)pyrene (0.012 <i>u</i> g/L)	DW: 0.01 <i>u</i> g/L
	Dissolved Lead (10.5 ug/L)	DW: 10 <i>u</i> g/L
	Benzene (100 ug/L)	DW: 5 ug/L
MW14-4	Ethylbenzene (640 ug/L)	DW: 2.4 <i>u</i> g/L
	LEPHw (3400 ug/L)	AW _M : 500 <i>u</i> g/L
	VPHw (3300 <i>u</i> g/L)	AW _M : 1500 <i>u</i> g/L
	Naphthalene (110 ug/L)	AW _M : 10 <i>u</i> g/L
MW14-6	Benzo(a)pyrene (0.084 ug/L)	DW: 0.01 <i>u</i> g/L
1010014-0	Pyrene (0.37 <i>u</i> g/L)	AW _M : 0.2 <i>u</i> g/L
MW14-7	Benzo(a)pyrene (0.026 ug/L)	DW: 0.01 <i>u</i> g/L

6.6 QA/QC Results

To check the precision and accuracy of field data, QA/QC samples were collected for analysis. Field QA/QC samples consisted of collecting split duplicate samples of soil, groundwater and soil vapour. Duplicate sampling requirements are outlined in the Ministry of Environment Technical Guidance 1 on Contaminated Sites – Site Characterization and Confirmation Testing. To evaluate the laboratory protocols, during the time of analysis of the selected parameters, one in every ten samples analyzed is recommended for duplicate sample analysis. The results of the duplicate samples are used to confirm acceptable method precision to determine if the data is reliable.

The measure of the reproducibility or precision of the data is quantified by calculating the Relative Percent Difference (RPD) or Maximum Spread (MS). The RPD is calculated when the sample and duplicate concentration are both greater than or equal to five times the reported detection limit (RDL) and when the sample and/or duplicate concentration is less than five times the RDL the MS is calculated. If the concentration of both the sample and duplicated are reported less than the RDL then RPD and MS are not calculated. Sample and duplicate results that are both less than the RDL are considered to be in general agreement. To calculate the RPD the absolute value of the difference between the sample and the duplicate is divided by the average of the sample and duplicate and multiplied by 100, to obtain a percentage. To calculate the MS the sample and duplicate value are subtracted to determine if the subtracted value is less than or greater than the RDL.

Generally, RPD values greater than 35% for soil and 20% for water, suggest further review. Furthermore, MS values greater than the RDL suggest further review. If the RPD or MS are greater than the percentages and criteria detailed above then it is generally necessary to determine a cause and decide whether the effect of the precision level may alter the findings of the investigation. A RPD or MS that appears to indicate poor precision must be evaluated in relation to factors such as the sample pairing (e.g., confirming sample identification), nature of the sample (e.g., soil or groundwater, heterogeneous or homogeneous), the nature of the chemical or analysis (e.g., metals or organics) and the concentrations of the chemical (e.g., less than the applicable standard) before conclusions are drawn.

6.6.1 Field QA/QC Results

<u>Soil</u>

Soil sample MW14-5 (0.6) and its duplicate sample MW14-C were analyzed for LEPH/HEPH, PAH and metals. Soil analytical QA/QC results are presented in Tables 1 and 2. RPD values greater than 35% were calculated for lead and tin. The calculated MS values for benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(b+j)fluoranthene, chrysene, fluoranthene, phenanthrene, pyrene, mercury and silver were greater than the RDL. All other calculable RPDs were less than 35% and all calculable MS were within the acceptable range.

The data from MW14-5(0.6) / MW14-C was reviewed for reliability. The detected concentrations for the above listed constituents exceeding the QA/QC criteria were at least an order of magnitude below the applicable standards. Furthermore, this sample pair represents fill soil that is heterogeneous in nature, which can contribute to the variability between the two samples. The difference in the sample and duplicate sample results did not change the outcome of the investigation with respect to the CSR standards. Therefore, the results are considered to be reliable and the calculated QA/QC values are considered acceptable.

<u>Groundwater</u>

Groundwater sample MW14-6 and its duplicate sample MW14-A were analyzed for LEPHw, HEPHw, PAH, chlorinated phenols and dissolved metals. Groundwater analytical QA/QC results are presented in Tables 3, 4 and 6. The calculated MS values for benzo(a)anthtacene, benzo(a)pyrene and pyrene exceeded their RDLs. All other MS values and all RPD values were less than the laboratory detection limit or maximum acceptable RPD of 20%. RPD and MS values were not calculated for chlorinated phenols as each of the samples had concentrations less than the RDL.

The data from MW14-6 / MW14-A was reviewed for reliability. Benzo(a)pyrene and pyrene exceeded the CSR standards in the sample and duplicate sample, and were therefore considered to be in general agreement. The results are considered to be reliable and the calculated QA/QC values are considered acceptable.

6.6.2 Laboratory QA/QC Results

The laboratory QA/QC measures included method blanks, duplicate analysis, and spike and matrix spike recoveries were reviewed in addition to the Maxxam quality assurance and quality control calculations. The laboratory RPD values were within acceptable limits, or were less than five times the detection limits. The sample blank and spike analyses were also within the acceptable limits. Sample hold times of 7 to 180 days for soil and groundwater, depending on the parameter being analysed were not exceeded. Therefore, the samples and duplicates are in agreement, sample integrity has been maintained and the data is considered reliable. The laboratory completed QA/QC is provided in the Laboratory Analytical Reports attached at the end of this report.

7. SUMMARY AND DISCUSSION

This Phase II ESA was conducted to determine if PCOCs associated with the on Site and off-site APECs are present in the Site soil and groundwater at concentrations greater than the applicable standards outlined in the CSR. This investigation included the drilling of 7 boreholes, all of which were completed as groundwater monitoring wells with soil vapour attachments (MW/SV14-1 to MW/SV14-7).

A discussion regarding each of the APECs is provided below:

On-Site APEC 1: Fill material

Historical records indicate that creeks were formerly located on southern portion of the Site. These creeks were infilled with material of unknown origin and quality. To investigative this APEC, locations MW14-1, MW14-2, MW14-6 and MW14-7 were advanced on the southern portion of the Site. During the drilling, fill material was also encountered in MW14-4 and MW14-5 (northwestern portion of the Site).

Soil samples were submitted for hydrocarbon and metals analysis from the fill material at investigative locations MW14-1, MW14-2, MW14-5, MW14-6 and MW14-7. Soil sample MW14-5(0.6) had concentrations of copper, lead and zinc above the CSR CL/IL standards and soil sample MW14-6(0.8) had a zinc concentration above the CSR CL/IL standard. Hydrocarbon concentrations in the fill material samples were less than the CSR CL/IL standards. The metals concentrations at MW14-1, MW14-2 and MW14-7 and the remaining metal concentrations at MW14-5 and MW14-6 were less than the CSR CL/IL standards.

Groundwater samples from MW14-1, MW14-2, MW14-5, MW14-6 and MW14-7 were submitted for hydrocarbon and dissolved metals analysis. The concentrations of benzo(a)pyrene exceeded the CSR DW standard at MW14-2, MW14-6 and MW14-7. The concentration of pyrene exceeded the CSR AW $_{\rm M}$ standard at MW14-6. Monitoring wells MW14-2, MW14-6 and MW14-7 were screened within the fill unit. The remaining hydrocarbons at these locations were less than the CSR AW $_{\rm M}$ and DW standards. Concentrations of dissolved metals at MW14-1, MW14-2, MW14-5, MW14-6 and MW14-7 were less than the CSR AW $_{\rm M}$ and DW standards.

On-Site APEC 2: Potential heating oil and/or other USTs

A GPR scan was conducted to investigate the potential underground fuel storage tanks (USTs) on the Site. A subsurface anomaly (approximately 3 m by 2 m in size) was observed adjacent to the northwest corner of the Site building. The size and shape of the anomaly is consistent with a UST. The contents of the tank are unknown. To investigate this APEC, monitoring well MW14-4 was installed south (immediately down-gradient) of the UST.

One soil sample from MW14-4 collected at a depth of 1.5 mbg, in fill material exhibiting hydrocarbon-like odours, was submitted for analysis of LEPH, HEPH, PAH, BTEX and VPH. The analytical results indicated that the concentration of benzene exceeded the CSR CL/IL standard. The concentrations of LEPH, HEPH, PAH, toluene, ethylbenzene, xylenes and VPH were less than the applicable CSR CL/IL standards.

A groundwater sample was collected from MW14-4 and submitted to the laboratory for the analysis of LEPHw, PAH, BTEX, VPHw and dissolved metals. The analytical results indicated that concentrations of LEPHw, VPHw and naphthalene exceeded the CSR AW_M standards. Concentrations of benzene, ethylbenzene and dissolved lead exceeded the CSR DW standards. The dissolved lead concentration at MW14-4 (10.5 ug/L) is marginally greater than the CSR DW standard of 10 ug/L.

Based on the proximity of the soil and groundwater contamination to the property line (within 2 metres), there is a potential that contaminants have migrated off-site onto the City of Vancouver's property (between 370 and 456 Prior Street). Additional drilling would be required to confirm if the contamination has migrated off-site

Off-Site APEC 3: Former smelting and metal operation at 310 Prior Street

A former smelting and metal works operation was located at 310 Prior Street, Vancouver which is adjacent to the west of Site property 370 Prior Street.. To investigate this APEC, investigative location MW14-5 was advanced on the northwestern portion of the Site.

Groundwater analytical results from MW14-5 showed that the concentrations of LEPHw, PAH, BTEX, VOCs, VPHw and dissolved metals were less than the CSR AW_M and DW standards.

Off-Site APEC 4: Former ink manufacturing operation at 496 Prior Street

Historical records indicate that a former ink manufacturer was located at 496 Prior Street which is adjacent to the east of the Site. The manufacturing operations occurred from the 1930s to the 1960s and the existing building has been on the property since the 1930s. Investigative locations MW14-2 and MW14-3 were advanced on the east-southeast and northeast portion of the Site, respectively, to assess potential groundwater impacts from the former ink manufacturing operation.

Groundwater samples from MW14-2 and MW14-3 were submitted for analysis of VOCs, VPHw and dissolved metals to investigate this off-site APEC. Concentrations of VOCs, VPHw and dissolved metals were less than the CSR AW_M and DW standards.

Off-Site APEC 5: Former rail yard at 1002 Station Street

Historical records indicate that a former rail yard, with a number of building containing locomotive and rail car repair shops and machine shops was located at 1002 Station Street, adjacent to the south of the Site from the 1930s or earlier, to the 1980s. The buildings were removed and the yard was remediated in 2011. Investigative locations MW14-1, MW14-6 and MW14-7 were advanced along the south property line to investigate this APEC.

Groundwater samples from MW14-1, MW14-6 and MW14-7 were submitted for analysis of LEPHw, PAH, BTEX, VOC, VPHw, metals, and chlorophenols. As discussed above in APEC 1, concentrations of benzo(a)pyrene exceeded the CSR DW standard at MW14-2, MW14-6 and MW14-7 and the concentration of pyrene exceeded the CSR AW $_{\rm M}$ standard at MW14-6. The source of the elevated PAHs are unknown, they could be associated with the fill material or associated with this off-site APEC. Concentrations of LEPHw, BTEX, VOC, VPHw, metals, and chlorophenols were less than the CSR AW $_{\rm M}$ and DW standards.

8. CONCLUSIONS

Constituents of concern are present in Site soil and groundwater in excess of the applicable standards of the BC Contaminated Sites Regulation.

We trust this is the information you require at this time. Please contact us should you have any questions.

Sincerely,

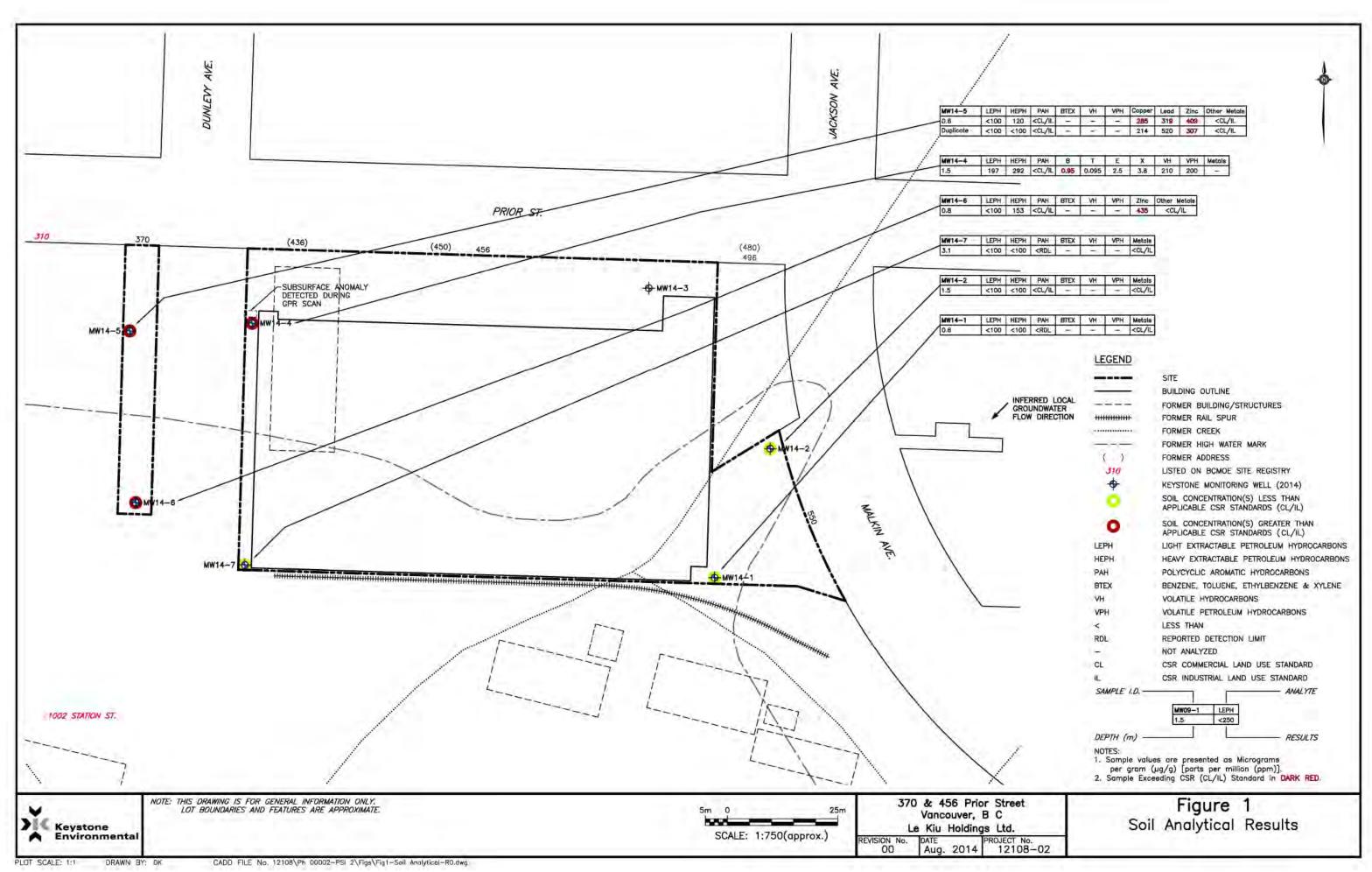
Keystone Environmental Ltd.

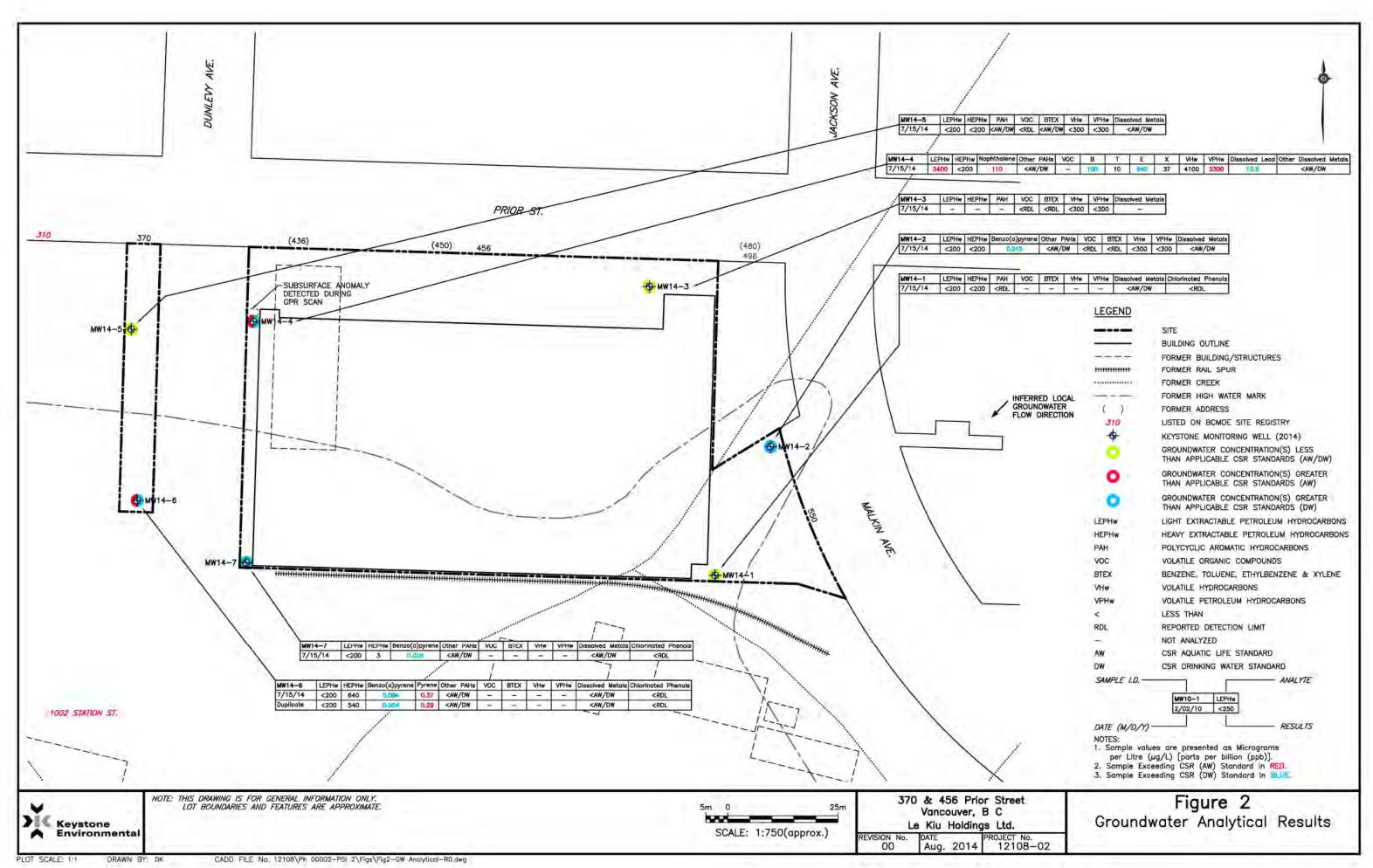
Brian Lennan, P.Geo. Project Geoscientist

Nicole MacDonald, B.Sc., P.Ag. Project Manager

Raminder Grewal, P.Eng. President

\key-filesvr\Common\12100-12199\12108\Phase 00002 - PSI 2\Report\12108-02 140801 Phase II ESA.docx


ATTACHMENTS:


- Figure
- Tables
- Well Development and Purge Forms
- Maxxam Analytics Ltd. Certificates of Analysis
- Keystone Environmental Ltd. General Terms and Conditions for Services

FIGURES

TABLES

GLOSSARY: SOIL ANALYTICAL RESULTS

370 & 456 Prior Street, Vancouver, BC Le Kiu Holdings Ltd.

Project #: 12108

July 2014

Ag AL BC MOE P11 CL CSR EPH10-19 EPH19-32 HEPH HWR IL LEPH MS MTBE	Agricultural Land (BC CSR Schedule 7, Column III) Agricultural Land Use British Columbia Ministry of Environment, Protocol 11 Commercial Land Use British Columbia Contaminated Sites Regulation Extractable Petroleum Hydrocarbons (carbon range 10 to 19) Extractable Petroleum Hydrocarbons (carbon range 19 to 32) Heavy Extractable Petroleum Hydrocarbons (corrected for PAHs) British Columbia Hazardous Waste Regulation Industrial Land Use Light Extractable Petroleum Hydrocarbons (corrected for PAHs) Maximum Spread Methyl tert-Butyl Ether
Non-Ag NS PAHs PAHs HMW PAHs LMW	Non-agricultural land (BC CSR Schedule 7, Column II) No Standard Polycyclic Aromatic Hydrocarbons Polycyclic Aromatic Hydrocarbons Heavy Molecular Weight Polycyclic Aromatic Hydrocarbons Light Molecular Weight
PCB	Polychlorinated Biphenyls
PCDD PCDF PL	Polychlorinated Dibenzo-p-dioxins Polychlorinated Dibenzo Furans Park Land Use
RL	Residential Land Use
RPD TCLP TEQ UCC EH UCC HH VH6-10 VOCS VPH WDP	Relative Percent Difference Toxicity Characteristic Leaching Procedure Toxicity Equivalence Quotient Upper Cap Concentrations for Environmental Health Upper Cap Concentrations for Human Health Volatile Petroleum Hydrocarbons (carbon range 6 to 10) Volatile Organic Compounds Volatile Petroleum Hydrocarbons (corrected for BTEX) Waste Disposal Prohibited (Schedule 7, Column IV)

List of Symbols	
	Concentration is less than the laboratory reported detection limit
*	Laboratory reported detection limit is greater than applicable standard/quideline
	Sample was not analyzed for the specified constituent
а	BC CSR Matrix Numerical Soil Standards (BC CSR Scedule 5) site specific factors 1 Intake of contaminated soil 2 Groundwater used for drinking water
	3 Toxicity to soil invertebrates and plants
	7 Groundwater flow to surface water used by aquatic life (marine)
b	CSR standard is pH dependent
С	CSR standard for hexavalent chromium (Cr VI) used for conservativeness
d	Regional background soil quality for metals analyses from BC MOE Protocol 4
е	CSR standard for VPH/LEPH/HEPH used for comparison
List of Units mbg	Metres below grade Micrograms per gram
μg/g Soil Exceedances	micrograms per gram
125	Exceeds CSR CL standards

<u>125</u>	Exceeds CSR CL standards
125	Exceeds CSR IL standards

QA/QC Exceedances

4,,440	EXCOCUALITOCO
	45%
	45%
	\ 3
	70

RPD exceeds 35% MS exceeds RDL

Formulas RPD

RPD = [[Max Concentration - Min Concentration]/[[Max Concentration + Min Concentration]/2]]*100

TABLE 1: SOIL ANALYTICAL RESULTS

INORGANICS

370 & 456 Prior Street, Vancouver, BC

Le Kiu Holdings Ltd. Project #: 12108 July 2014

CSR CL Standards	CSR IL Standards
n/s	n/s
n/s	n/s
40	40
15a	15a
400a	400a
8	8
1.5-100ba	1.5-200ba
n/s	n/s
100da	100da
300	300
100-250dba	100-250dba
300-700dba	300-2000dba
19000	19000
40	150
40	40
500	500
10	10
40	40
100000	100000
300	300
n/s	n/s
150-600ba	150-600ba

SAMPLE ID	Units	MW14-1(0.6)	MW14-2(1.5)	MW14-5 (0.6)	MW14-C	RPD or MS	MW14-6 (0.8)	MW14-7 (3.1)
DATE SAMPLED		10-Jul-14	10-Jul-14	11-Jul-14	11-Jul-14	for	11-Jul-14	11-Jul-14
LAB CERTIFICATE		B459514	B459514	B459514	B459514	MW14-5 (0.6)	B459514	B459514
LAB SAMPLE ID		KC1129	KC1136	KC1155	KC1161	and	KC1162	KC1171
SAMPLE DEPTH (mbg)		0.6	1.5	0.6	Duplicate of	MW14-C	0.8	3.1
SOIL DESCRIPTION					MW14-5 (0.6)			
pН		7.15	7.67	6.41	6.79		6.37	6.73
Metals								
aluminum	μg/g	9780	17600	14200	12800	10%	20700	14600
antimony	μg/g	0.16	0.72	6.22	5.9	5%	1.56	0.14
arsenic	μg/g	2.54	3.88	5.29	4.63	13%	4.98	1.55
barium	μg/g	41.1	140	150	152	1%	213	59
beryllium	μg/g	<0.40	<0.40	<0.40	<0.40		<0.40	<0.40
cadmium	μg/g	0.197	0.158	1.07	0.75	35%	0.509	0.182
calcium	μg/g	668	707	619	568	9%	790	906
chromium (total)	μg/g	14.2	15.8	17.3	13.3	26%	20.2	16.2
cobalt	μg/g	6.48	5.14	6.01	4.93	20%	6.3	6.95
copper	μg/g	12	28.2	285	214	28%	32.4	19
lead	μg/g	2.69	98.9	<u>319</u>	520	48%	127	2.86
manganese	μg/g	335	252	234	213	9%	252	250
mercury	μg/g	<0.050	0.196	0.354	0.22	0.134>0.05	0.083	<0.050
molybdenum	μg/g	0.82	0.62	0.5	0.45	0.05<0.1	0.53	0.21
nickel	μg/g	19.6	11.8	21.2	22.4	6%	13.1	12
selenium	μg/g	<0.50	<0.50	<0.50	<0.50		<0.50	<0.50
silver	μg/g	<0.050	0.083	0.167	0.11	0.057>0.05	3.01	0.06
strontium	μg/g	28.3	76.8	37.3	31.1	18%	29.6	45.7
tin	μg/g	0.8	9.51	23	14.2	47%	2.93	0.23
vanadium	µg/g	41	43.7	43.7	39.2	11%	48.4	50.5
zinc	μg/g	37.7	66.8	<u>409</u>	<u>307</u>	28%	<u>435</u>	36.5

Soil Exceedances

125 125 Exceeds CSR CL standards Exceeds CSR IL standards

QA/QC Exceedances

45% >3 RPD exceeds 35% MS exceeds RDL

TABLE 2: SOIL ANALYTICAL RESULTS HYDROCARBONS

370 & 456 Prior Street, Vancouver, BC

Le Kiu Holdings Ltd. Project #: 12108 July 2014

CSR CL	CSR IL	SAMPLE ID	Units	MW14-1(0.6)	MW14-2(1.5)	MW14-4 (1.5)	MW14-5 (0.6)	MW14-C	RPD or MS	MW14-6 (0.8)	MW14-7 (3.1)
Standards	Standards	DATE SAMPLED	oc	10-Jul-14	10-Jul-14	10-Jul-14	11-Jul-14	11-Jul-14	for	11-Jul-14	11-Jul-14
Otandards	Otalidards	LAB CERTIFICATE		B459514	B459514	B459514	B459514	B459514	MW14-5 (0.6)	B459514	B459514
		LAB SAMPLE ID		KC1129	KC1136	KC1149	KC1155	KC1161	and	KC1162	KC1171
		SAMPLE DEPTH (mbg)		0.6	1.5	1.5	0.6	Duplicate of	MW14-C	0.8	3.1
		SOIL DESCRIPTION		0.0			0.0	MW14-5 (0.6)		0.0	· · ·
n/s	n/s	pH		7.15	7.67		6.41	6.79		6.37	6.73
		Monocyclic Aromatic Hydrocarbons	1		1						
0.04a	0.04a	benzene	μg/g			0.95					
7a	7a	ethylbenzene	μg/g			2.5					
50	50	styrene	μg/g			<0.030					
2.5a	2.5a	toluene	μg/g			0.095					
20a	20a	xylenes	μg/g			3.8					
		Petroleum Hydrocarbons			•		•			•	
200e	200e	VH6-10	µg/g			210					
200	200	VPHs	μg/g			200					
2000	2000	LEPHs	μg/g	<100	<100	197	<100	<100		<100	<100
5000	5000	HEPHs	µg/g	<100	<100	292	120	<100	20<100	153	<100
		Polycyclic Aromatic Hydrocarbons									
n/s	n/s	acenaphthene	μg/g	<0.050	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050
n/s	n/s	anthracene	μg/g	<0.050	<0.050	0.051	0.053	<0.050	0.003<0.05	0.11	<0.050
10	10	benzo[a]anthracene	μg/g	<0.050	0.11	0.086	0.16	0.099	0.061>0.05	0.1	<0.050
10	10	benzo[a]pyrene	µg/g	<0.050	0.11	0.088	0.17	0.099	0.071>0.05	0.087	<0.050
10	10	benzo[b]fluoranthene	µg/g	<0.050	0.093	0.081	0.15	0.096	0.054>0.05	0.081	<0.050
n/s	n/s	benzo[b+j]fluoranthene	μg/g	<0.050	0.16	0.14	0.25	0.16	0.09>0.05	0.14	<0.050
n/s	n/s	benzo[g,h,i]perylene	µg/g	<0.050	0.068	0.065	0.12	0.1	0.02<0.05	0.069	<0.050
10	10	benzo[k]fluoranthene	μg/g	<0.050	0.054	<0.050	0.078	0.053	0.025<0.05	<0.050	<0.050
n/s	n/s	chrysene	µg/g	<0.050	0.13	0.11	0.2	0.14	0.06>0.05	0.14	<0.050
10	10	dibenz[a,h]anthracene	μg/g	<0.050	<0.050	<0.050	<0.050	<0.050		<0.050	<0.050
n/s	n/s	fluoranthene	μg/g	<0.050	0.25	0.26	0.36	0.21	0.15>0.05	0.24	<0.050
n/s	n/s	fluorene	µg/g	<0.050	<0.050	<0.050	<0.050	<0.050		0.74	<0.050
10	10	indeno[1,2,3-cd]pyrene	μg/g	<0.050	0.056	0.053	0.098	0.068	0.03<0.05	<0.050	<0.050
n/s	n/s	methylnaphthalene, 2-	µg/g	<0.050	0.18	2.3	0.37	0.26	35%	2	<0.050
50	50	naphthalene	μg/g	<0.050	0.14	1.3	0.64	0.66	3%	1.3	<0.050
50	50	phenanthrene	μg/g	<0.050	0.13	0.19	0.18	0.082	0.098>0.05	0.54	<0.050
100	100	pyrene	μg/g	<0.050	0.25	0.25	0.36	0.22	0.14>0.05	0.23	<0.050
n/s	n/s	Total HMW-PAHs	μg/g	<0.050	1.2	1.1	1.8	1.2	40%	1	<0.050
n/s	n/s	Total LMW-PAHs	μg/g	<0.050	0.44	3.9	1.3	1	26%	5.4	<0.050
n/s	n/s	Total PAHs	μg/g	<0.050	1.6	4.9	3	2.2	31%	6.4	<0.050

Soil Exceedances

125 125 Exceeds CSR CL standards Exceeds CSR IL standards

QA/QC Exceedances

45% >3 RPD exceeds 35% MS exceeds RDL

GLOSSARY: GROUNDWATER ANALYTICAL RESULTS

370 & 456 Prior Street, Vancouver, BC Le Kiu Holdings Ltd.

Project #: 12108 July 2014

List of Acronyms

ABE Alberta Environment
AWFW Aquatic Life (freshwater)
AWM Aquatic Life (marine)

BC MOE P11 British Columbia Ministry of Environment, Protocol 11
CCME Canadian Council of the Ministers of the Environment
CSR British Columbia Contaminated Sites Regulation

DW Drinking Water

EPHw10-19 Extractable Petroleum Hydrocarbons (carbon range 10 to 19)
EPHw19-32 Extractable Petroleum Hydrocarbons (carbon range 19 to 32)

GVS&DD Greater Vancouver Sewerage and Drainage District

HEPHW Heavy Extractable Petroleum Hydrocarbons (corrected for PAHs)
HWR British Columbia Hazardous Waste Regulation

IW Irrigation Water

LEPHw Light Extractable Petroleum Hydrocarbons (corrected for PAHs)

LW Livestock Water

MS Maximum Spread

MTBE Methyl tert-Butyl Ether

MV Metro Vancouver

NS No Standard

PAHs Polycyclic Aromatic Hydrocarbons

PAHS HMW Polycyclic Aromatic Hydrocarbons Heavy Molecular Weight
PAHS LMW Polycyclic Aromatic Hydrocarbons Light Molecular Weight

PCB Polychlorinated Biphenyls
RPD Relative Percent Difference

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TEQ Toxicity Equivalency

UCC EH Upper Cap Concentrations for Environmental Health
UCC HH Upper Cap Concentrations for Human Health

VHw6-10 Volatile Petroleum Hydrocarbons (carbon range 6 to 10)

VOCs Volatile Organic Compounds

VPHw Volatile Petroleum Hydrocarbons (corrected for BTEX)

List of Symbols

Concentration is less than the laboratory reported detection limit
* Laboratory reported detection limit is greater than applicable standard/quideling

Laboratory reported detection limit is greater than applicable standard/guideline

- Sample was not analyzed for the specified constituent a CSR standard is hardness dependent

b CSR standard varies with Chloride ion concentration.

c CSR standard varies with pH and temperature. 10°C is assumed.

d CSR standard varies with pH, temperature, and salinity. 10°C and 10 g/L is assumed.

e CSR standard varies with pH, temperature and substance isomer. Consult Director for further advice.

List of Units

mbg Metres below grade µg/g Micrograms per gram

Groundwater Exceedances

<u>125</u>	Exceeds CSR DW standards
125	Exceeds CSR AWM standards

QA/QC Exceedances

45%	RPD exceeds 20%
>3	MS exceeds RDL

Formulas

RPD RPD = [[Max Concentration - Min Concentration]/[[Max Concentration + Min Concentration]/2]]*100

TABLE 3: GROUNDWATER ANALYTICAL RESULTS INORGANICS

370 & 456 Prior Street, Vancouver, BC

Le Kiu Holdings Ltd. Project #: 12108 July 2014

CSR DW	CSR AW _M
Standards	Standards
n/s	n/s
n/s	n/s

SAMPLE ID	Units	MW14-1	MW14-2	MW14-4	MW14-5	MW14-6	MW14-A	RPD or MS	MW14-7
DATE SAMPLED		15-Jul-14	15-Jul-14	15-Jul-14	15-Jul-14	15-Jul-14	15-Jul-14	for	15-Jul-14
LAB CERTIFICATE		B459953	B459953	B459953	B459953	B459953	B459953	MW14-6	B459953
LAB SAMPLE ID		KC4032	KC4033	KC4035	KC4036	KC4037	KC4039	and	KC4038
TOP OF SCREEN (mbg)		1.2	1.8	0.9	1.2	1.5	Duplicate of	MW14-A	1.5
BOTTOM OF SCREEN (mbg)		2.7	3.4	2.4	2.7	3.1	MW14-6		3.1
pH (field)		7.3	6.5	6	6.2	6.3	6.3		5.8
hardness	mg/L	57.2	330	117	233	260	262	0.008	76.6
Dissolved Metals									
aluminum	ua/l	28.6	11.3	46.7	365	17.5	17.2	0.017	15.3

11/5	11/3
9500	n/s
6	200
10	125
1000	5000
n/s	1000
n/s	n/s
5000	50000
5	1
n/s	n/s
50	150
n/s	40
1000	20
n/s	n/s
10	20
n/s	n/s
n/s	n/s
1	1
250	10000
n/s	83
n/s	n/s
10	540
n/s	n/s
n/s	15
200000	n/s
22000	n/s
n/s	3
22000	n/s
20	1000
n/s	n/s
5000	100
n/s	n/s

hardness	mg/L	57.2	330	117	233	260	262	0.008	76.6
Dissolved Metals									
aluminum	μg/L	28.6	11.3	46.7	365	17.5	17.2	0.017	15.
antimony	μg/L	0.74	0.59	<0.50	0.79	<0.50	<0.50		<0.50
arsenic	μg/L	0.3	1.19	1.65	0.76	3.78	3.72	0.016	
barium	μg/L	12.7	90.6	48.6	53	213	221	0.037	12.
beryllium	μg/L	<0.10	<0.10	<0.10	0.11	<0.10	<0.10	-	<0.10
bismuth	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0
boron	μg/L	<50	593	77	400	93	88	5<50	<50
cadmium	μg/L	0.016	0.1	0.085	0.051	<0.010	<0.010		0.17
calcium	μg/L	19900	117000	35300	70000	89200	91000	0.02	2360
chromium (total)	μg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	-	<1.0
cobalt	μg/L	1.09	4.59	15.2	17.9	10.7	9.94	0.074	9.2
copper	μg/L	1.6	0.62	0.4	2.97	0.24	0.23	0.01<0.02	1.7
iron	μg/L	5	2960	5230	1380	22800	23400	0.026	21
lead	μg/L	<0.20	<0.20	<u>10.5</u>	<0.20	<0.20	<0.20	-	<0.20
magnesium	μg/L	1790	8980	6910	14300	8970	8520	0.051	428
manganese	μg/L	155	1150	1930	2160	3530	3580	0.014	94
mercury	μg/L	<0.010	<0.010	<0.010	0.013	<0.010	<0.010		<0.010
molybdenum	μg/L	14.7	1.5	<1.0	<1.0	1.3	1.3	0<1	<1.0
nickel	μg/L	1.2	5.6	16.4	32.2	7.4	7.4	0.	14.
potassium	μg/L	2490	6540	3510	5050	6140	6050	0.015	148
selenium	μg/L	0.11	0.17	0.17	0.21	<0.10	<0.10		<0.10
silicon	μg/L	4270	7500	7770	10800	11100	11600	0.044	731
silver	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020		<0.020
sodium	μg/L	4980	17400	12400	34200	12600	12200	0.032	583
strontium	μg/L	77.5	983	193	318	611	591	0.033	17-
thallium	μg/L	<0.050	<0.050	0.103	0.146	<0.050	<0.050		<0.050
tin	μg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0
uranium	μg/L	<0.10	0.6	<0.10	0.56	0.22	0.22	0<0.1	<0.10
vanadium	μg/L	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0
zinc	μg/L	<5.0	6.2	6.8	18	<5.0	<5.0		1
zirconium	μg/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.50
Other Inorganics									
lithium	ug/l	<5.0	<5.0	<5.0	10.5	∠5.0	<5.0	-	<5.0

11/3	11/3	Zircomani	μg/ L	~0.00	Q0.00	70.50	Q0.00	70.50	0.50		40.00
		Other Inorganics									
730	n/s	lithium	μg/L	<5.0	<5.0	<5.0	10.5	<5.0	<5.0	-	<5.0
n/s	n/s	sulphur	μg/L	<3000	11000	28700	28800	27900	29600	0.059	16500

Groundwater Exceedances

125 125 Exceeds CSR DW standards Exceeds CSR AWM standards

QA/QC Exceedances

45% >3 RPD exceeds 20% MS exceeds RDL

TABLE 4: GROUNDWATER ANALYTICAL RESULTS HYDROCARBONS

370 & 456 Prior Street, Vancouver, BC

Le Kiu Holdings Ltd. Project #: 12108 July 2014

CSR DW	CSR AW _M	SAMPLE ID	Units	MW14-1	MW14-2	MW14-3	MW14-4	MW14-5	MW14-6	MW14-A	RPD or MS	MW14-7
Standards	Standards	DATE SAMPLED		15-Jul-14	for	15-Jul-14						
		LAB CERTIFICATE		B459953	MW14-6	B459953						
		LAB SAMPLE ID		KC4032	KC4033	KC4034	KC4035	KC4036	KC4037	KC4039	and	KC4038
		TOP OF SCREEN (mbg)		1.2	1.8	1.5	0.9	1.2	1.5	Duplicate of	MW14-A	1.5
		BOTTOM OF SCREEN (mbg)		2.7	3.4	3.1	2.4	2.7	3.1	MW14-6		3.1
n/s	n/s	pH (field)		7.3	6.5	6.4	6	6.2	6.3	6.3		5.8
n/s	n/s	hardness	mg/L	57.2	330	-	117	233	260	262	0.008	76.6
	<u> </u>	Monocyclic Aromatic Hydrocarbons		•	•	•	•	•	•			•
5	1000	benzene	μg/L		<0.40	<0.40	100	<0.40				
2.4	2500	ethylbenzene	μg/L		<0.40	<0.40	640	0.56				
n/s	720	styrene	μg/L		<0.50	<0.50	<0.40	<0.50				
24	3300	toluene	μg/L		<0.40	<0.40	10	<0.40				
300	n/s	xylenes	μg/L		<0.40	<0.40	37	6.3				
		Petroleum Hydrocarbons			•	•						
n/s	n/s	HEPHw	μg/L	<200	<200		<200	<200	640	540	100<200	<200
n/s	500	LEPHw	μg/L	<200	<200		3400	<200	<200	<200		<200
15000	15000	VH6-13	μg/L		<300	<300	4100	<300			-	
n/s	1500	VPHw	μg/L		<300	<300	3300	<300				
		Polycyclic Aromatic Hydrocarbons								•		
n/s	60	acenaphthene	μg/L	<0.050	<0.050		<0.050	<0.050	<0.050	<0.050		<0.050
n/s	0.5	acridine	μg/L	<0.050	<0.050		<0.050	<0.050	<0.050	<0.050	-	<0.050
n/s	1	anthracene	μg/L	<0.010	<0.010		<0.010	<0.010	0.16	0.14	0.133	0.018
n/s	1	benzo[a]anthracene	μg/L	<0.010	0.011		<0.010	<0.010	0.11	0.073	0.404	0.031
0.01	0.1	benzo[a]pyrene	μg/L	<0.0090	0.012		<0.0090	<0.0090	0.084	0.054	0.435	0.026
n/s	n/s	benzo[b+j]fluoranthene	μg/L	<0.050	<0.050		<0.050	<0.050	<0.11	0.077	0.033<0.11	<0.050
n/s	n/s	benzo[g,h,i]perylene	μg/L	<0.050	<0.050		<0.050	<0.050	<0.050	<0.050		<0.050
n/s	n/s	benzo[k]fluoranthene	μg/L	<0.050	<0.050		<0.050	<0.050	<0.050	<0.050	-	<0.050
n/s	1	chrysene	μg/L	<0.050	<0.050		<0.050	<0.050	0.16	0.12	0.04<0.05	<0.050
n/s	n/s	dibenz[a,h]anthracene	μg/L	<0.050	<0.050		<0.050	<0.050	<0.050	<0.050		<0.050
n/s	2	fluoranthene	μg/L	<0.020	0.027	'	<0.020	<0.020	0.36	0.3	0.182	0.088
n/s	120	fluorene	μg/L	<0.050	<0.050		0.13	<0.050	0.62	0.62	0.	<0.050
n/s	n/s	indeno[1,2,3-cd]pyrene	μg/L	<0.050	<0.050		<0.050	<0.050	<0.050	<0.050	-	<0.050
n/s	n/s	methylnaphthalene, 2-	μg/L	<0.10	<0.10		92	0.42	1.6	1.6	0.	<0.10
n/s	10	naphthalene	μg/L	<0.10	<0.10		110	1.3	2.7	2.8	0.036	<0.10
n/s	3	phenanthrene	μg/L	<0.050	<0.050		0.078	<0.050	0.76		0.054	0.12
n/s	0.2	pyrene	μg/L	<0.020	0.026	i	<0.020	<0.020	0.37	0.29	0.242	0.087
n/s	34	quinoline	μg/L	<0.24	<0.24		<0.24	<0.24	<0.24	<0.24		<0.24
n/s	n/s	Total HMW-PAHs	μg/L	<0.050	0.076	i	<0.050	<0.050	1.1	0.91	0.189	0.23
n/s	n/s	Total LMW-PAHs	μg/L	<0.24	<0.24		200	1.8	6.9	7.1	0.029	<0.24
n/s	n/s	Total PAHs	μg/L	<0.24	<0.24		200	1.8	8	8	0.	0.36

Groundwater Exceedances

125 Exceeds CSR DW standards
125 Exceeds CSR AWM standards

QA/QC Exceedances

45% RPD exceeds 20%

>3 MS exceeds RDL

TABLE 5: GROUNDWATER ANALYTICAL RESULTS

370 & 456 Prior Street, Vancouver, BC

Le Kiu Holdings Ltd. Project #: 12108 July 2014

CSR DW	CSR AW _M	SAMPLE ID	Units	MW14-2	MW14-3	MW14-5
Standards	Standards	DATE SAMPLED		15-Jul-14	15-Jul-14	15-Jul-14
		LAB CERTIFICATE		B459953	B459953	B459953
		LAB SAMPLE ID		KC4033	KC4034	KC4036
		TOP OF SCREEN (mbg)		1.8	1.5	1.2
		BOTTOM OF SCREEN (mbg)		3.4	3.1	2.7
n/s	n/s	pH (field)		6.5	6.4	6.2
n/s	n/s	hardness	mg/L	330	-	233
	<u> </u>	Halogenated Aliphatics		I	1	1
16	n/s	bromodichloromethane	μq/L	<1.0	<1.0	<1.0
100	n/s	bromoform	μg/L	<1.0	<1.0	<1.0
51	n/s	bromomethane	μg/L	<1.0	<1.0	<1.0
5	130	carbon tetrachloride	µg/L	<0.50	<0.50	<0.50
46	n/s	chloroethane	μg/L	<1.0	<1.0	<1.0
100	20	chloroform	μg/L	<1.0	<1.0	<1.0
950	n/s	chloromethane	μg/L	<1.0	<1.0	<1.0
100	n/s	dibromochloromethane	μg/L	<1.0	<1.0	<1.0
0.34	n/s	dibromoethane, 1,2-	μg/L	<0.20	<0.20	<0.20
370	n/s	dibromomethane	μg/L	<0.90	<0.90	<0.90
7300	n/s	dichlorodifluoromethane	μg/L	<2.0	<2.0	<2.0
3700	n/s	dichloroethane, 1,1-	μg/L	<0.50	<0.50	<0.50
5	1000	dichloroethane, 1,2-	μg/L	<0.50	<0.50	<0.50
14	n/s	dichloroethene, 1,1-	μg/L	<0.50	<0.50	<0.50
370	n/s	dichloroethene, 1,2- (cis)	μg/L	<1.0	<1.0	<1.0
730	n/s	dichloroethene, 1,2- (trans)	μg/L	<1.0	<1.0	<1.0
50	980	dichloromethane	μg/L	<2.0	<2.0	<2.0
9.9	n/s	dichloropropane, 1,2-	μg/L	<0.50	<0.50	<0.50
6.7	n/s	dichloropropene, 1,3- (cis)	μg/L	<1.0	<1.0	<1.0
6.7	n/s	dichloropropene, 1,3- (trans)	μg/L	<1.0	<1.0	<1.0
26	n/s	tetrachloroethane, 1,1,1,2-	μg/L	<0.50	<0.50	<0.50
3.4	n/s	tetrachloroethane, 1,1,2,2-	μg/L	<0.50	<0.50	<0.50
30	1100	tetrachloroethene	μg/L	<0.50	<0.50	<0.50
0000	n/s	trichloroethane, 1,1,1-	μg/L	<0.50	<0.50	<0.50
12	n/s	trichloroethane, 1,1,2-	μg/L	<0.50	<0.50	<0.50
5	200	trichloroethene	μg/L	<0.50	<0.50	<0.50
1000	n/s	trichlorofluoromethane	μg/L	<4.0	<4.0	<4.0
2	n/s	vinyl chloride	μg/L	<0.50	<0.50	<0.50
		Halogenated Aromatics			•	-
730	n/s	bromobenzene	μg/L	<2.0	<2.0	<2.0
3	420	dichlorobenzene, 1,2-	μg/L	<0.50	<0.50	<0.50
n/s	1500	dichlorobenzene, 1,3-	μg/L	<0.50	<0.50	<0.50
1	260	dichlorobenzene, 1,4-	μg/L	<0.50	<0.50	<0.50
30	120	monochlorobenzene	μg/L	<0.50	<0.50	<0.50
		Non-Halogenated Aliphatics		L	·	
6.1	n/s	butadiene, 1,3-	μg/L	<5.0	<5.0	<5.0
				i	1	1

butanone, 2-

methyl-2-pentanone, 4-

μg/L <10

μg/L <10

<10

<10

Groundwater Exceedances

125 Exceeds CSR DW standards
125 Exceeds CSR AWM standards

n/s

QA/QC Exceedances

22000

2900

45% RPD exceeds 20% S MS exceeds RDL

TABLE 6: GROUNDWATER ANALYTICAL RESULTS PHENOLICS

370 & 456 Prior Street, Vancouver, BC

Le Kiu Holdings Ltd. Project #: 12108 July 2014

CSR DW	CSR AW _M
Standards	Standards
n/s	n/s
n/s	n/s

n/s n/s n/s	n/s n/s n/s
n/s n/s	n/s n/s
n/s	n/s
	n/s
n/s	
0.3	2.5
n/s	n/s
0.1	8.5
30	1
n/s	n/s
n/s	n/s
n/s	n/s
1	2
n/s	n/s
2	1

SAMPLE ID	Units	MW14-1	MW14-6	MW14-A	RPD or MS	MW14-7
DATE SAMPLED		15-Jul-14	15-Jul-14	15-Jul-14	for	15-Jul-14
LAB CERTIFICATE		B459953	B459953	B459953	MW14-6	B459953
LAB SAMPLE ID		KC4032	KC4037	KC4039	and	KC4038
TOP OF SCREEN (mbg)		1.2	1.5	Duplicate of	MW14-A	1.5
BOTTOM OF SCREEN (mbg)		2.7	3.1	MW14-6		3.1
pH (field)		7.3	6.3	6.3	-	5.8
hardness	mg/L	57.2	260	262	0.008	76.6

hardness	mg/L	57.2	260	262	0.008	76.6
Chlorinated Phenols						
dichlorophenol, 2,3-	μg/L	<0.10	<0.10	<0.10		<0.10
dichlorophenol, 2,6-	μg/L	<0.10	<0.10	<0.10	-	<0.10
dichlorophenol, 3,4-	μg/L	<0.10	<0.10	<0.10	-	<0.10
dichlorophenol, 3,5-	μg/L	<0.10	<0.10	<0.10		<0.10
dichlorophenols (total)	μg/L	<0.10	<0.10	<0.10		<0.10
monochlorophenol, 3-	μg/L	<0.10	<0.10	<0.10		<0.10
monochlorophenols (total)	μg/L	<0.10	<0.10	<0.10		<0.10
pentachlorophenol	μg/L	<0.63	<0.63	<0.63		<0.63
tetrachlorophenol, 2,3,4,5-	μg/L	<0.10	<0.10	<0.10		<0.10
tetrachlorophenol, 2,3,4,6-	μg/L	<0.10	<0.10	<0.10		<0.10
tetrachlorophenol, 2,3,5,6-	μg/L	<0.10	<0.10	<0.10	-	<0.10
tetrachlorophenols (total)	μg/L	<0.10	<0.10	<0.10		<0.10
trichlorophenol, 2,3,4-	μg/L	<0.10	<0.10	<0.10	-	<0.10
trichlorophenol, 2,3,5-	μg/L	<0.10	<0.10	<0.10		<0.10
trichlorophenol, 2,3,6-	μg/L	<0.10	<0.10	<0.10		<0.10
trichlorophenol, 2,4,5-	μg/L	<0.10	<0.10	<0.10	-	<0.10
trichlorophenol, 2,4,6-	μg/L	<0.10	<0.10	<0.10		<0.10
trichlorophenol, 3,4,5-	μg/L	<0.10	<0.10	<0.10	-	<0.10
trichlorophenols (total)	μg/L	<0.10	<0.10	<0.10		<0.10
-						

Groundwater Exceedances

<u>125</u>	
125	

Exceeds CSR DW standards Exceeds CSR AWM standards

QA/QC Exceedances

•	-	-		
		4	5%	
		,	>3	

RPD exceeds 20% MS exceeds RDL

WELL DEVELOPMENT AND PURGE FORMS

Vois on 2 D

COMMENTS:

GENERAL INFORMATION

	0.5							85900
MELL INFORMATI Web Cover Type	- E	tusli 🖁	m. 000km	Lock sode No-Inc	, -	Well Casing	24nch (51 mm <i>Dia</i> nteter or o	
Scr genad Inforval (i	m/s <u>41-9</u>	Way Hear	f Vаровт Пеят	ting 3.72 grat	opm or %ubl	L ☐ IRKI €agle	QualiniPac 🔲	Other
DEVELOPMENT			ATIONS		PURGIN	G INFORMATION	AND OBSERVA	TIONS
ا الله Dev Dalei	m (74)	_2 rempesW	+ 22	₹.	Purge Di	ate: <u>July</u> (5//	9 Weathor:	5440, Hot
Dapih in Balloni oʻ				tres		: Vojume - 3 4 ww		10 20.00 THOUSE
Depth to Water from	n Top of Cas	ang IYi	65 me	4res tres		imple Mathod		
Depth to Product (f Length of Water Go	dumn (X-Y)	1.97	metres	2223	Waterra	Purp	· · · · · · · · ·	
Volume al Water In Minimum Volume «			y and Alma	77.4	Bailer			8
Total Valuma Dav	etoped	24	Arres			pecify)		
Development Met Malena Punio	hod		forbiglity Auti Selore Dov.	ngs '	Turbfell Purging	y Railings *		
Surge Block (Ilme)	1		Aller Dev.	$=$ \parallel	Затріні	9	50.000 50.000	
Dailer Olher (apacily)								
			<u> </u>	OBP	00	ı Time	Low how sampling or OTNV	y, Bale
Val voume Vuged (L)	p⊣ (w	Conductivity Sami or (mStore)	Temperáture (°C)	(m\/)	(mg·L)	THING	(mBTOC)	(m L/min.)
n		155	20./ _	44		916	15.667	21516
	5.4	155	221	123		9121	6,2g	11
	7,2	196	26.9	135		ું છે : યું 🐇	6.69	P.
3	+30.50.50	15'5"	200	0.2		6) \a	5.97.22	8
			-					
		10.00		-	-	-	A	
					_	Colour (initial) Recovery " S	C/c+ (stable	
Sheen Yes (☐ No 🗗 De	escription:	elicia i wa	ndard miloi: T	nmuncraluro :	Recovery " S	Now 🔲 Minderali	e 🖭 Fast 🗆
Sheen Yes (NOTES; Field Park Outstion, Red with	No 2 De grigoger end 8 no Pobechal I	escription: Latality Guidance L10mVt. and it an	ınlıkable: Dissi	elved Oaya6∩	(±10%)	Recovery "S	Now 🔲 Minderali	e 🖭 Fast 🗆
Sheen Yes (NGTES; Field Park Dudalion-Reducik Tudalion san bac	∏ No ⊡ 'De anggerenend 2 on Potenhal I. dekomiced s	scription: Cutality Guidance L10mV), and it sp rejectively Lsing:	iplicable: Dissi a scala ef 1 lo	olved Oxyge∩ 10. ∝here 1 is	(±10%) odear, 10 isti	Recovery " - S 182 °Ci; Specific opaque.	Sow 🔲 Mederali Conductance (†3	e d Fask □ ≪J:
Sheen Yes (NOTES: Fleki Fare Dudalion-Reducik Turbidily may be o "Recovery Estima SAMPLING PARA	No ZDe grigger end S on Poherhal I. delarminad s de - Slow, gre METER INF	escription: Luthiny Guidance Luthny, and it sp Ubjectively Using Reser then 10 cm i ORMATION (A)	igiliçable: Dissi a scolo ef 1 lo drawdowit - M Daie and Tim	olved Oxygen 10. where 1 is Soderene slight c: (J 15//	(±10%) calcar, 10 ht lly knwer than	Recovery " S 110:2 "Ci; Specific opaque 110 cm drowdown Analytical Laborate	Sow Mederal Conductance (±3 Faet within 10	e 🖫 Fast 🔲 %): I cm drawdown
Sheen Yes (NOTES: Fleki Fare Dudalion-Reducik Turbidily may be o "Recovery Estima SAMPLING PARA	No ZDe grigger end S on Poherhal I. delarminad s de - Slow, gre METER INF	escription: Luthiny Guidance L10mVI, and it sp Ubjectively Using easer then 10 cm i ORMATION (A)	iplicable: Dissi a scale of 1 lo drawdowit - M Dene and Time Dage and Time	olved Caygen 10, where 1 is loolerene slight c: 50 // /// c:	(±10%) clicar, 10 is ily kneer than (/ /	Recovery "S 118.2 *Ci; Specific opaque, 110 cm drowdown Analytical Laborato I) Date and Time:	Sow Mederal Conductance (±3 Faet within 10	e 🖫 Fast 🔲 %): I cm drawdown
Sheen Yes (NGTES; Flekt Pare Dudation-Reductk Turbidity may be 4 "Recovery Estima BAMPLING PARA B) Data and Time VOCVPH	No Z [*] De singler and 2 on Potential I. detarmined si de - Stow. gre ille - Stow. gre ille - Stow. gre	escription: Lutdiny Guidance L10mVt, and it sp ubjectively Using : EMERITATION (A) C	upikeable: Dissi a scala of 1 to drawdown M Dene and Timo Page and Timo B	olved Oaygen 10. where 1 is foderene skett c:	(±10%) calcar, 10 is in the kiner that (x) (x) (x)	Recovery "S 10k2 *Ci; Specific opsque. 10 em drawdown Analytical Laborate of Date and Time: EPH Glycol	Sow Mederali Conductance (†3 Fael, within 10 ary	e 🖫 Fast 🔲 %): I cm drawtown
Sheen Yes (NGTES; Flekt Pare Dudation-Reductk Turbidity may be o "Recovery Estima SAMPLING PARA B) Date and Time VOC/VPH EPH corrected (* e Non-Chipmated P	No 2 De sense en la 2 persona de la 2 persona	escription: Lutdiny Guidance L10mVt, and it sp ubjectively Using : EMERITATION (A) C	uplicable: Dissi a scala of 1 to drawdown M Date and Time Page and Time P. C	olved Oaygen 10. where 1 is foderene skytr c:	(±10%) calcar, 10 is thy kneer than (£ // / (£	Recovery " S 18.2 C; Specific opsque, 10 cm drawdown Analytical Laborate Date and Time: Chycology POSs	Slow Mederali Conductance (#3 Faet within 10	e 🖫 Fast 🔲 %): I cm drawtown
Teen Yes (NOTES; Flek Park Dudalion-Reduck Turbidity may be of "Recovery Estima AMPLING PARA By Data and Time /OC/VPH EPH corrected (* 6	No 2 De sense en la 2 persona de la 2 persona	escription: Lutdiny Guidance L10mVt, and it sp ubjectively Using : EMERITATION (A) C	uplicable: Dissi a scala of 1 to drawdown M Date and Time Page and Time P. C	olved Oaygen 10. where 1 is foderene singth c:	(±10%) calcar, 10 is thy kneer than (£ // / (£	Recovery " S 18.2 C; Specific opsque, 10 cm drawdown Analytical Laborate Date and Time: Chycology POSs	Fael, within 10 Fael, within 10 Fy And	e 🖫 Fast 🔲 %): I cm drawdown

Version 2.0

		tu Vanzourl	⊭ Ole	ni: <u>Le k</u>	12108			H H
VELL INFORM Vell Gravet Type		Flush D	павлен з		k 📭	Well Casing		other:
		(U) We'll Hear	And the second second	101		O PHEORMATION		
		Waalkor. <u>\$</u>				Her July 18/15		
Papth to Bonom Papth to Water Papth to Produce Ength of Water Volume of Water Volume of Water Pater Volume of Watering Primp Surge Minox (Imp	iran Topici V ct (* applicati r Calunn (X-) ar in Well = (X us = 8 * well = Dewilloped Welfrod	Y;	metres (4/43)	ng 25 :	PurgerSa Wateria I Penaratu Bailer Other Iap	y Animga *	ή κριμιστο <u> </u>	ਮਕ ਯੂ ਹ
aller Whar (specify) Vell volume Volged (IL)	рН	Conductivity	Temperatura (%C)	09P (mV)	00 (mg/l)	: Time	····. (or fine sample) DTM' (mBTCC)	ony
gt= (=)						1000 4	2 498	0.75
1	6.6	70.5	14.4	120		<u> 1013</u>	2501	77.
7.	6.4	714	14-1	\$4		وداول	2,624	
_3	_ 6 -5	_711	14.1	<u> 97</u>		79.25	2. 593	
	-							
	es □ No L9 No □ No □	Description'.				Colour (initial) A Recovery ** \$./k., (stab	ile) ne
Odour Ye Sheen Ye	Parameter éra	d Stelpility Guidance al 7+10mV:rand dis	pophiable (Dissol accelentitio)	ved Okygen Diwhele 1 s	(≘10%) (degrilDesk	+:I.2 °C): Specific opaque	Conductance ±	
Sheen Ye NOTES Field f Oxidentor Herb Turbidity may l "Hecovery Esli	iction Patenti be detormine imale - Slown	greater than 40 col		Tal. 15	F. C.	Ine your Laborate	SCR SYSTEMATICS	
theen Ye IOTES Field f Nijogilkir Herb Turtacity may i 'Hecovery Esi	oction Potenti be detormine imale - Slow:	rgreater than 40 col-		Tal. 15	114	A STATE OF THE PARTY OF THE PAR	ary proper	

NOTES: Bottle and Preservehive Haquinomients Correspond to Laboratury Standards

COMMENTS:

GENERAL INFORMATION

<mark>YELL INFORM</mark> Yell Cover Typ	c	Flush P				Weil Casing	2-inch (51 con Diameter or :	ilher
icreared futer	<u>کک (at</u> lim):	_/А ′_ — үүөй нөж	d Vapour Read.	n <u>g 55</u>				
		TION AND OBSERV				NECEMATION		
iev Dale:	1314/14	Weather: \$5	many 1769			le: <u>آسلم ال</u> ا		
Rapih to Bettor Reph to Water Reph to Produ ength of Wate folume of Water Volume of Water Total Volume	tiom Top of the fill applicable Column (X-) or Column (X-) or in Well = (X-) ne = 8 * ment	Casing (Y)	mot men explices 	res IRS S	Purge/So Waterra F Peristellin Boiler	Valume = 3 * we mple Method Pump : ploong set to: ecity)	1	Wres
Pevalopmani Valera Plump Jorga Block (hi Jaler Khar (specily)	та:	_;	Turbidity Retir Belove Dev Alie: Dev		Turbially Purging Sempling		=	
Vell volume	рН	Conductivity (cStem) or (mS/cm)	Temperature (°C)	QAP (mV)	DO Impā I	IIMC	····Low free sampling o DTM (mBTOC)	Hate (mLines.)
٥	B	4 330	1/7			10 59	1.935	O 1 %
1	6.5	_{73_	12,2	12		M. Jaky	2015	
Σ.	6.3	651	17.50	125	-	11:10	2,135	
3	6.4	661	174	131		11:1 5	218	
		-						
	_	-		-	_	_		
idaur Ye Nicon Ye	95 No [2] 95 No [2]	(Description,)			_	Colour (initial) Recovery *** \$	ار الله (stabi	e) Fest 🗆
Dyjdation-Ham	uchan Patenti	d Stability Guidanco (al (±10mV): and if ap (d 8)bjectwoly using greater than 10 on	ppweable 104660 eecale of Life	Med Coygan 10. whea∉ lis	i(±140%) a class. Hi is c	matiue.		ita), I em orawdówn
	ARAMETER I	INFORMATION (A)	Date and Time Date and Time	545.15	//4 A	ภศylical Laborato) Date สเม Tin'จ.		
SAMPLING PA		0		EXVPHINT		☐ EPH Glycc ☐ PCBs		0000
SAMPLING P/ B) Oato and T /OC/VPH EPH corrected Non Chronicals (basolved Mali Pesicides	d Phenol	ЕР Н)	Cir	ika insted Ph eki Fiher & Pi i		Total Other	Veials	

COMMENTS:

Y005400 2.2

COMMENTS:

GENERAL INFORMATION

Monitoring Well 10: Aug 14 - 4

Veil Cover Typ		Flush Stack-up (m storau 1 Vapour Fl eso		ock 💁	Well Casing	2-inch (51 m Disorrector or D45∩Rae □	other
		ON AND OBSERV	ATIONS		PURGING	INFORMATION	AND OBSERV	ATIONS
ogo Dale: 5	سالهم والس	Weather: <u>Ca</u>	20- 423	.	Purga Dak	: <u>54,15/</u>	79 Weather	Suns Hil
	nai Weli trom 1		2-35 mer		Misimum	/aiume = 3 = we¹	/ volume	Aimes
Appit to Water Appit to Produc anglin of Wate Volume of Wate	Iram Top of Ca or of applicable r Column (X Y) er in Well = (X -	neing [Y] _ 1.5 	met metres	res res s	Pyrge/Son Waters P	ple Method	<u> </u>	9
finimont Volut istat Volume i	vi z 6 s wod vo Opv olopad	turne <u>9.2</u> 2			Oilve- (ape	raly)		
keys/consent			artidity flatin	age -	Turbully	Ratings *		
Vaterra Pump			Belove Dev Ther Dev.	I	Purging Sempling	-	-	
unge Block (lin aller		, P.,	nigi 647.		·/··	33		
Wher (saecily)							Law flow surgering	044
/ell volums urged (L)	pl• (Conductivity (Sem) or inform	Temperature (°C)	ORP (mV)	DÓ (mg/L)	Time	(mBTOC)	Pate (m./min.)
σ				<u></u> 0		8340	134	0.158 ho
Į.	4.0	405	19 3	35		173.55	1.625	
ı	6.0	419	11.9	46		11750	1644	
2	5.9.	7369	19,4	. 49		11.80	1.455	
		52.						
		c	_			Colour (initial)	(stab	da)
	e□naOM e□naOle		W.			Recovery '' S		
eldation-Redu	iction Polential No expersions	Stability Guedance: (±10mV); and if ag subjectively reing t reater than 10 cm :	plicable: Disso Ascela of 1 ho	êved Uxygêr 10. where 1	i (£70%) je glogr, 10 is ap	хадые.		3%). Ocm drawdown
AMPLING PA	RAMETER IN	FORMATION (A)	Date and Time	the second		alytical Laborato Date and Time.	ny July 5/	
B) Date and Ti			PA	EXCEPTION		EFF EPH D Oxyuus D PCBs		
3) Date and Ti OC/VPH				Morinaned Ph Ald Fuller & A L			detals:	

Project #/Name: 12/08-02

Vergion 2.0

COMMENTS:

GENERAL INFORMATION

	(_m 22							
VELL INFORM Mad Cover Typ		Flush D Stick-up D	m above.	TOURS 1.1 27 Sec. 33	k 🗹	Vexi Gasing	2 inch (51 m) Diameter of	orner:
Screened Inter	уд) (m); <u>Ч</u>	· 9' Wall Hos	d Уарсы: Явас	w <u>g 4.</u> 9 _0	gin or %LEL I	∏ HKI€agbe l	3 MmRae □	Other:
EVELOPMEN	IT INFORMA	TION AND OBSERT	ATIONS		PURGING	NFORMATION	AND OBSERV	ATIONS
iav. Date:	July 14/14	Weather	Mry 25°C	2	Puige Date		Weather	<u> </u>
and to Dollar	- al Well from	1100 as 2	71 me	100,000	Adimyntari k	 οίμπε = 3 = wel	(νηλιστή	//mex
Sepan to Water Sepan to Produ angth of Water Okime of Water National Votal Setal Volume	· hen: Top of t let (å appäcab let in Well = tX ne = 6 = meñ t	Casing (Y)1 a Y 1 Y) +23	The property of the property o		Waterra Pu	ubing spilm		000
		-	Tyroudity Mark		Turbidity 4	Tatifron *		
Development Natara Pump		☑ /	Baloro Öév 🔛	N. S. C.	Purging		-	
Surge Block (1) Bailer	me	_ <u> </u>	After Dev		Sampling		-	
Other (apecaly)							Low Now entrolling	
Vell volume 'urged (L)	φΗ	Conductivity (a\$/cm; or (m5/cm)	Tomperature	ORP (mV)	CO (ng/L)	Time	ρτ ιν (π8τό¢)	Rate (introde)
0		17001605 05	1			12.28	1.15	27.03 m
1	6.3	710	140	16 <i>6</i> 2		12:32	1.225	
7	6.3	420	20.4	SH		12:34	J. 29 <u>5</u>	
3	6.1	522	211	51		17:24/3	1.285	
4	5.2	599	21.3	90		12 :48	1.305	
	-				-		_	
	-	_	(c. 1)	-11	-		(stab	(a)
	85 XI No 📙	Description: 34 pt	oc ine Sn	C.II		Colour (initial) Cocavery ** S		
Odour Y Sheen Y			will ten t also	ortand units): T	on a series and a series of a series of		Conductance (4	2%);
ilneen Y IOTES: Field Doldation-Fled	Parameter an uction Potenti	d Stability Guidance al (±10mV); and if a d subjectively using greater than 10 cm	pplicable: Dissi	swed Oxygen	cloor 10 is no	naue.		0 om drawdown
Ineer Y IOTES: Field Didation-Red Turbidity may "Recovery Es	Parameter an uction Potenti be determine timate - Slow:	al (±10mV); and if a d subjectively using greater than 10 cm	a scale of 1 to drawdown M Dale and Time Dale and Time	10, where 1 is loderale: slight	clear, 10 is op ly lower than 1 An (0)	aque. 0 cm drawdown alylical Laborato Dale and Time:	Fast, within 1	
IOTES: Field Oxidation-Fled Turbidity may "Recovery Es SAMPLING P B) Date and 1	Parameter an uction Potenti- be determine timate - Slow: ARAMETER I ime:	al (±10mV); and if a d subjectively using greater than 10 cm	pplicable: Dessi a scale of 1 to drawdown M Dale and Time Dale and Time B P	TQ, where 1 is loderate: slighter in the control of	clear, 10 is op ly lower than 1 An (D)	aque. 0 cm drawdown elylical Laborato Dale and Time: ———————————————————————————————————	Fast, within 1 TY B Uctabs	0 cm drawddwn

gjyrgign 2.0

WELL INFORM		Flugh 🔟		Look		eV Casing	2-inch (51 mn	ni 🖙
Veh Cover Typ	. .	Shek-up 🗆	m aboves	men No-to	ck 🗹	8	Diameter or t	
lereened Inter			A CONTRACTOR OF THE PARTY OF TH	ing <u>0.4</u>	ppm on %LEL [A STATE OF THE PARTY OF THE PAR
EVELOPMEN		TION AND OBSER	VATIONS	4		NFORMATION July K	AND OBSERVA	Comman He
lepth in Balto	ni oʻ Well fron		<u>्री</u> हास्य	10.00	Moretani V	itumo = 3 + mó	li voluma	Speu
lepih is Water lepih is Produ engih si Wase 'glume ai Wal dyununi Volor	,ci (ii epplicat)r Çolumn (X- er in Weii = ()	(ic) V) (03 x · Y] • 2	inet inetres 19 Aire 13 Aires	:83	Purge Samp Wateria Pur Penstallic ju Baller	np organio		
ofal Volume			<u>6</u>		Other (spec			
<i>levelopment</i> Valerra Pump Jurge Block (fi Julier			Furbidity Rativ Before Day Alter Day	5	Twbidity A Purging Sampling	amgs :	=	
ittier (specily) Yell voluma	рн	Conductivily	Temperature		DO Secondo	Tane	Law law sanding of OTW (mBTQC)	Rate (mUvmin.)
urged (L)		(ປຣິເສກ) ຫ (ທຣິສາກ)	(°C)	(mV)	(mg/L)		1.94	,186/mm
0	70	428	19.0	45		116	2.125	
7	6.4	635	19,1	47		1501	2,40	
3.	6.3	641	19.2	46		176	2275	
	-	-	-	-		-		
		Description:			C		Frr√ (stab Glaw □ Modera	
oridation-Red	uction Potent	nd Stability Guldanov ial (±10mV); and if a ed subjectively using ; greater than 10 cm	pplicable: Disso	Ned Oxygen	(£10%) Is clear, 10 is ops	igue.		9%): 0 주제 etrawdown
SAMPLING P	ARAMETER Inte	INFORMATION (A) Date and Time) Date and Time	Mario	1.17.16	lylical Laborati late and Time.	My -	110,
/QCVPH	1 II.e. L&PH#H ed Phanol	<u> </u>	B1 P7 Q1 F6	rex/VPH/MT VHs Identified PR old Filter & P	ienols [Glyco PGBs Total	Motals	00000
enn corrected Ion-Chlonnal NasoNed Mel Tespisides	rals		p#	100	L.	3000000		

GENERAL INFORMATION

Monitoring We Location: <u>*</u> Sampler: <u>*</u>	illo: //	The State Clares	Project 4·Na [고단무드 Clloru:	Le Kui	2/08-92		
Well INFORM Well Cover Typ		Flush Stick-up 🗎		ı-kack 🖟	We ^l Casing	2 ench (51 m) Diameter är	omer
Scroonea Interv	α((m) <u></u> ξ	- 10 Well Had	id Vaccur Pooding 13	pgm or %ill	L 🗌 RKIEagle	□ MM#ae □	Olher
DEVELOPMEN	T INFORMA	ATION AND OBSER	VATIONS	PURGE	46 INFORMATION	AND OBSERV	THORS
Dev. Dale	Ed 19/1	<u>-/</u>	wan 4 25 %	frurge 0	ate. 34-15	#4 Weather	See 181
Depth to Gallon Depth to Waler Depth to Produc Length of White Varume of Wale Months Volum Total Volume I	tiom Top of bijli applical r Column (X w Ip Well ∈) re = 6 × well	Casing (Y) . —2 h'ol Y) — — — — — — — — — — — — — — — — — — —	(-位) nietoes nietoes metres metres itro) itres fues	Purge:S Waters	ic (Neng ser »	volume:	1.7.75.00.75
Development I Wateria Pump Surge Block (fin Beiter I Hher (specify)	ne:	⊈ ′	Turbidity Railings * Bolare Dev After Dev	<i>Turbidi</i> Purging Sampliri	a <u> </u>	=	
Well volume Purged (L)	рН	(Sandwellerly JuS/cm) or (mS/cm)	Temperature ORP (*C) imV)	l DO (mg/L)	/ Time	- tak-baranpayu (TW (mBTOC)	ey. S Able (MU)tur (
0	180800	<u> </u>			*8	2115	150
(62	237	163 52		1785	2-2242	295
2	5.8	188	W. 104		2:05	2 46	500
3	5.8	197	160 118	_	2:06	2.71	··· —
							_
Odovir Yes Sheen Yes	s () No () s () No ()	Description:				cles/ (stabl	
NOTES, Field P Ox dation Redux "Tudoidte mae t	/ leiemeter ar clian Potent se determina	nd Stability Guidance rat (±10mV), árid il ág ed subjectively námů	pH (±0.1 standard unite opticable: Dissolved Ovyg a gosto of tild tild, where drawntown - Moderate, si	1 is clear, 10 4	ODEONE		
SAMPLING PA (B) Date and Til			Date and Time Date and Time		Analytical Laboraю 0) Dale and Time:	n k	-7
vöctoph EPH corrected (Non Chroinsted Dissolved Metal Pesticidas	# Phenol	(EPH)	BTEX/VPH/A PAHs Chlorinated I Field Filler & pH	Phenois	Glycal Glycal FCBs Glycal Other	Mora/a	
Dupicale Samp	4a ID:		Ouplicate Sample Paya	maters:	- 33	¥2	2 2
	diameter .	ative Pequirements (Correspond in Laboratory	Standards			
COMMENTS:			·				

8000

DNOR

MAXXAM ANALYTICS LTD. CERTIFICATES OF ANALYSIS

Your Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Attention:Nicole MacDonald

KEYSTONE ENVIRONMENTAL LTD SUITE 320 4400 DOMINION STREET BURNABY, BC CANADA V5G 4G3

Your C.O.C. #: K015044, K015043, K015045, K015046

Report Date: 2014/07/22

Report #: R1607379

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B459514 Received: 2014/07/14, 16:50

Sample Matrix: Soil # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE Soil LH, VH, F1 SIM/MS	1	2014/07/15	2014/07/15	BBY8-SOP-00010	EPA SW846 8260C
Elements by ICPMS (total)	6	2014/07/16	2014/07/16	BBY7SOP-00001	EPA 6020a
Moisture	7	N/A	2014/07/16	BBY8SOP-00017	Ont MOE -E 3139
PAH in Soil by GC/MS (SIM)	7	2014/07/15	2014/07/18	BBY8SOP-00022	EPA 8270D
Total LMW, HMW, Total PAH Calc	4	N/A	2014/07/18	BBY WI-00033	BC MOE Lab Method
Total LMW, HMW, Total PAH Calc	3	N/A	2014/07/21	BBY WI-00033	BC MOE Lab Method
pH (2:1 DI Water Extract)	6	2014/07/17	2014/07/17	BBY6SOP-00028	BC Env Lab Manual
EPH less PAH in Soil By GC/FID	4	N/A	2014/07/18	BBY WI-00033	BC MOE Lab Method
EPH less PAH in Soil By GC/FID	3	N/A	2014/07/21	BBY WI-00033	BC MOE Lab Method
BC Hydrocarbons in Soil by GC/FID	4	2014/07/15	2014/07/17	BBY8SOP-00029	BC Env Lab Manual
BC Hydrocarbons in Soil by GC/FID	3	2014/07/15	2014/07/18	BBY8SOP-00029	BC Env Lab Manual
Volatile HC-BTEX	1	N/A	2014/07/16	BBY WI-00033	BC MOE Lab Method

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Jennifer Villocero 22 Jul 2014 14:44:42 -07:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Amandeep Nagra, Account Specialist

Email: ANagra@maxxam.ca Phone# (604)639-2602

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

PHYSICAL TESTING (SOIL)

Maxxam ID		KC1129	KC1136	KC1149	KC1155	KC1161	KC1162			
Sampling Date		2014/07/10	2014/07/10	2014/07/10	2014/07/11	2014/07/11	2014/07/11			
COC Number K015044 K015044 K015043 K015045 K015045 K015045										
Units MW14-1(0.6) MW14-2(1.5) MW14-4 (1.5) MW14-5 (0.6) MW14-C MW14-6 (0.8) RDL QC Batch										
Physical Properties										
Moisture % 14 17 34 16 10 16 0.30 7564206										
RDL = Reportable Detection L	RDL = Reportable Detection Limit									

Maxxam ID KC1171									
Sampling Date	Sampling Date 2014/07/11								
COC Number K015046									
Units MW14-7 (3.1) RDL QC Batch									
		, ,							
Physical Properties									
Physical Properties Moisture	%	19	0.30						

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

BCCSR BTEX/VPH BY HS IN SOIL (SOIL)

Maxxam ID		KC1149		
Sampling Date		2014/07/10		
COC Number		K015043		
	Units	MW14-4 (1.5)	RDL	QC Batch
Volatiles				
VPH (VH6 to 10 - BTEX)	mg/kg	200	10	7563317
Benzene	mg/kg	0.95	0.0050	7564900
Toluene	mg/kg	0.095	0.020	7564900
Ethylbenzene	mg/kg	2.5	0.010	7564900
m & p-Xylene	mg/kg	3.6	0.040	7564900
o-Xylene	mg/kg	0.18	0.040	7564900
Styrene	mg/kg	<0.030	0.030	7564900
Xylenes (Total)	mg/kg	3.8	0.040	7564900
VH C6-C10	mg/kg	210	10	7564900
Surrogate Recovery (%)				
1,4-Difluorobenzene (sur.)	%	97		7564900
4-Bromofluorobenzene (sur.)	%	99		7564900
D10-ETHYLBENZENE (sur.)	%	95		7564900
D4-1,2-Dichloroethane (sur.)	%	102		7564900
RDL = Reportable Detection Lir	nit	_		

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

LEPH & HEPH FOR CSR IN SOIL (SOIL)

Maxxam ID		KC1129	KC1136	KC1149	KC1155		KC1161		
Sampling Date		2014/07/10	2014/07/10	2014/07/10	2014/07/11		2014/07/11		
COC Number		K015044	K015044	K015043	K015045		K015045		
	Units	MW14-1(0.6)	MW14-2(1.5)	MW14-4 (1.5)	MW14-5 (0.6)	QC Batch	MW14-C	RDL	QC Batch
Polycyclic Aromatics									
Naphthalene	ug/g	<0.050	0.14	1.3	0.64	7568186	0.66	0.050	7569033
2-Methylnaphthalene	ug/g	<0.050	0.18	2.3	0.37	7568186	0.26	0.050	7569033
Acenaphthylene	ug/g	<0.050	<0.050	<0.050	<0.050	7568186	<0.050	0.050	7569033
Acenaphthene	ug/g	<0.050	<0.050	<0.050	<0.050	7568186	<0.050	0.050	7569033
Fluorene	ug/g	<0.050	<0.050	<0.050	<0.050	7568186	<0.050	0.050	7569033
Phenanthrene	ug/g	<0.050	0.13	0.19	0.18	7568186	0.082	0.050	7569033
Anthracene	ug/g	<0.050	<0.050	0.051	0.053	7568186	<0.050	0.050	7569033
Fluoranthene	ug/g	<0.050	0.25	0.26	0.36	7568186	0.21	0.050	7569033
Pyrene	ug/g	<0.050	0.25	0.25	0.36	7568186	0.22	0.050	7569033
Benzo(a)anthracene	ug/g	<0.050	0.11	0.086	0.16	7568186	0.099	0.050	7569033
Chrysene	ug/g	<0.050	0.13	0.11	0.20	7568186	0.14	0.050	7569033
Benzo(b&j)fluoranthene	ug/g	<0.050	0.16	0.14	0.25	7568186	0.16	0.050	7569033
Benzo(b)fluoranthene	ug/g	<0.050	0.093	0.081	0.15	7568186	0.096	0.050	7569033
Benzo(k)fluoranthene	ug/g	<0.050	0.054	<0.050	0.078	7568186	0.053	0.050	7569033
Benzo(a)pyrene	ug/g	<0.050	0.11	0.088	0.17	7568186	0.099	0.050	7569033
Indeno(1,2,3-cd)pyrene	ug/g	<0.050	0.056	0.053	0.098	7568186	0.068	0.050	7569033
Dibenz(a,h)anthracene	ug/g	<0.050	<0.050	<0.050	<0.050	7568186	<0.050	0.050	7569033
Benzo(g,h,i)perylene	ug/g	<0.050	0.068	0.065	0.12	7568186	0.10	0.050	7569033
Low Molecular Weight PAH`s	ug/g	<0.050	0.44	3.9	1.3	7562989	1.0	0.050	7562989
High Molecular Weight PAH`s	ug/g	<0.050	1.2	1.1	1.8	7562989	1.2	0.050	7562989
Total PAH	ug/g	<0.050	1.6	4.9	3.0	7562989	2.2	0.050	7562989
Calculated Parameters								•	
LEPH (C10-C19 less PAH)	mg/kg	<100	<100	197	<100	7563284	<100	100	7563284
HEPH (C19-C32 less PAH)	mg/kg	<100	<100	292	120	7563284	<100	100	7563284
Hydrocarbons									
EPH (C10-C19)	mg/kg	<100	<100	199	<100	7568171	<100	100	7569030
EPH (C19-C32)	mg/kg	<100	<100	292	121	7568171	<100	100	7569030
Surrogate Recovery (%)									
D10-ANTHRACENE (sur.)	%	102	91	90	87	7568186	78		7569033
D8-ACENAPHTHYLENE (sur.)	%	85	82	82	81	7568186	75		7569033
D8-NAPHTHALENE (sur.)	%	85	81	81	78	7568186	79		7569033
TERPHENYL-D14 (sur.)	%	102	97	98	93	7568186	84		7569033
O-TERPHENYL (sur.)	%	104	99	98	98	7568171	96		7569030
RDL = Reportable Detection Lin	nit								

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

LEPH & HEPH FOR CSR IN SOIL (SOIL)

Maxxam ID		KC1162	KC1171		
Sampling Date		2014/07/11	2014/07/11		
COC Number		K015045	K015046		
	Units	MW14-6 (0.8)	MW14-7 (3.1)	RDL	QC Batch
Polycyclic Aromatics					
Naphthalene	ug/g	1.3	<0.050	0.050	7569033
2-Methylnaphthalene	ug/g	2.0	<0.050	0.050	7569033
Acenaphthylene	ug/g	<0.050	<0.050	0.050	7569033
Acenaphthene	ug/g	0.82	<0.050	0.050	7569033
Fluorene	ug/g	0.74	<0.050	0.050	7569033
Phenanthrene	ug/g	0.54	<0.050	0.050	7569033
Anthracene	ug/g	0.11	<0.050	0.050	7569033
Fluoranthene	ug/g	0.24	<0.050	0.050	7569033
Pyrene	ug/g	0.23	<0.050	0.050	7569033
Benzo(a)anthracene	ug/g	0.10	<0.050	0.050	7569033
Chrysene	ug/g	0.14	<0.050	0.050	7569033
Benzo(b&j)fluoranthene	ug/g	0.14	<0.050	0.050	7569033
Benzo(b)fluoranthene	ug/g	0.081	<0.050	0.050	7569033
Benzo(k)fluoranthene	ug/g	<0.050	<0.050	0.050	7569033
Benzo(a)pyrene	ug/g	0.087	<0.050	0.050	7569033
Indeno(1,2,3-cd)pyrene	ug/g	<0.050	<0.050	0.050	7569033
Dibenz(a,h)anthracene	ug/g	<0.050	<0.050	0.050	7569033
Benzo(g,h,i)perylene	ug/g	0.069	<0.050	0.050	7569033
Low Molecular Weight PAH`s	ug/g	5.4	<0.050	0.050	7562989
High Molecular Weight PAH`s	ug/g	1.0	<0.050	0.050	7562989
Total PAH	ug/g	6.4	<0.050	0.050	7562989
Calculated Parameters	•				
LEPH (C10-C19 less PAH)	mg/kg	<100	<100	100	7563284
HEPH (C19-C32 less PAH)	mg/kg	153	<100	100	7563284
Hydrocarbons					
EPH (C10-C19)	mg/kg	<100	<100	100	7569030
EPH (C19-C32)	mg/kg	154	<100	100	7569030
Surrogate Recovery (%)			•		
D10-ANTHRACENE (sur.)	%	75	78		7569033
D8-ACENAPHTHYLENE (sur.)	%	77	77		7569033
D8-NAPHTHALENE (sur.)	%	79	80		7569033
TERPHENYL-D14 (sur.)	%	78	87		7569033
O-TERPHENYL (sur.)	%	95	96		7569030
RDL = Reportable Detection Lir	nit		•	•	

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		KC1129	KC1136	KC1136	KC1155	KC1161	KC1162		
Sampling Date		2014/07/10	2014/07/10	2014/07/10	2014/07/11	2014/07/11	2014/07/11		
COC Number		K015044	K015044	K015044	K015045	K015045	K015045		
	Units	MW14-1(0.6)	MW14-2(1.5)	MW14-2(1.5) Lab-Dup	MW14-5 (0.6)	MW14-C	MW14-6 (0.8)	RDL	QC Batch
Physical Properties									
Soluble (2:1) pH	рН	7.15	7.67	7.72	6.41	6.79	6.37	N/A	7565686
Total Metals by ICPMS	•	•							
Total Aluminum (Al)	mg/kg	9780	17600	17700	14200	12800	20700	100	7565684
Total Antimony (Sb)	mg/kg	0.16	0.72	0.76	6.22	5.90	1.56	0.10	7565684
Total Arsenic (As)	mg/kg	2.54	3.88	3.56	5.29	4.63	4.98	0.50	7565684
Total Barium (Ba)	mg/kg	41.1	140	143	150	152	213	0.10	7565684
Total Beryllium (Be)	mg/kg	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	0.40	7565684
Total Cadmium (Cd)	mg/kg	0.197	0.158	0.138	1.07	0.750	0.509	0.050	7565684
Total Chromium (Cr)	mg/kg	14.2	15.8	15.7	17.3	13.3	20.2	1.0	7565684
Total Cobalt (Co)	mg/kg	6.48	5.14	5.49	6.01	4.93	6.30	0.30	7565684
Total Copper (Cu)	mg/kg	12.0	28.2	27.8	285	214	32.4	0.50	7565684
Total Lead (Pb)	mg/kg	2.69	98.9	108	319	520	127	0.10	7565684
Total Manganese (Mn)	mg/kg	335	252	265	234	213	252	0.20	7565684
Total Mercury (Hg)	mg/kg	<0.050	0.196	0.233	0.354	0.220	0.083	0.050	7565684
Total Molybdenum (Mo)	mg/kg	0.82	0.62	0.63	0.50	0.45	0.53	0.10	7565684
Total Nickel (Ni)	mg/kg	19.6	11.8	11.3	21.2	22.4	13.1	0.80	7565684
Total Selenium (Se)	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7565684
Total Silver (Ag)	mg/kg	<0.050	0.083	0.100	0.167	0.110	3.01	0.050	7565684
Total Strontium (Sr)	mg/kg	28.3	76.8	79.3	37.3	31.1	29.6	0.10	7565684
Total Tin (Sn)	mg/kg	0.80	9.51	8.15	23.0	14.2	2.93	0.10	7565684
Total Titanium (Ti)	mg/kg	668	707	707	619	568	790	1.0	7565684
Total Vanadium (V)	mg/kg	41.0	43.7	43.3	43.7	39.2	48.4	2.0	7565684
Total Zinc (Zn)	mg/kg	37.7	66.8	66.2	409	307	435	1.0	7565684

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

N/A = Not Applicable

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

CSR/CCME METALS IN SOIL (SOIL)

Maxxam ID		KC1171		
Sampling Date		2014/07/11		
COC Number		K015046		
	Units	MW14-7 (3.1)	RDL	QC Batch
Physical Properties				
Soluble (2:1) pH	рН	6.73	N/A	7565686
Total Metals by ICPMS				
Total Aluminum (AI)	mg/kg	14600	100	7565684
Total Antimony (Sb)	mg/kg	0.14	0.10	7565684
Total Arsenic (As)	mg/kg	1.55	0.50	7565684
Total Barium (Ba)	mg/kg	59.0	0.10	7565684
Total Beryllium (Be)	mg/kg	<0.40	0.40	7565684
Total Cadmium (Cd)	mg/kg	0.182	0.050	7565684
Total Chromium (Cr)	mg/kg	16.2	1.0	7565684
Total Cobalt (Co)	mg/kg	6.95	0.30	7565684
Total Copper (Cu)	mg/kg	19.0	0.50	7565684
Total Lead (Pb)	mg/kg	2.86	0.10	7565684
Total Manganese (Mn)	mg/kg	250	0.20	7565684
Total Mercury (Hg)	mg/kg	<0.050	0.050	7565684
Total Molybdenum (Mo)	mg/kg	0.21	0.10	7565684
Total Nickel (Ni)	mg/kg	12.0	0.80	7565684
Total Selenium (Se)	mg/kg	<0.50	0.50	7565684
Total Silver (Ag)	mg/kg	0.060	0.050	7565684
Total Strontium (Sr)	mg/kg	45.7	0.10	7565684
Total Tin (Sn)	mg/kg	0.23	0.10	7565684
Total Titanium (Ti)	mg/kg	906	1.0	7565684
Total Vanadium (V)	mg/kg	50.5	2.0	7565684
Total Zinc (Zn)	mg/kg	36.5	1.0	7565684
RDL = Reportable Detection L	imit			
N/A = Not Applicable				

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	8.7°C
Package 2	8.0°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7564900	1,4-Difluorobenzene (sur.)	2014/07/15	96	70 - 130	99	70 - 130	98	%				
7564900	4-Bromofluorobenzene (sur.)	2014/07/15	100	70 - 130	100	70 - 130	98	%				
7564900	D10-ETHYLBENZENE (sur.)	2014/07/15	99	50 - 130	91	50 - 130	91	%				
7564900	D4-1,2-Dichloroethane (sur.)	2014/07/15	107	70 - 130	102	70 - 130	103	%				
7568171	O-TERPHENYL (sur.)	2014/07/17	92	50 - 130	92	50 - 130	113	%				
7568186	D10-ANTHRACENE (sur.)	2014/07/17	93	60 - 130	97	60 - 130	107	%				
7568186	D8-ACENAPHTHYLENE (sur.)	2014/07/17	89	50 - 130	89	50 - 130	95	%				
7568186	D8-NAPHTHALENE (sur.)	2014/07/17	89	50 - 130	89	50 - 130	94	%				
7568186	TERPHENYL-D14 (sur.)	2014/07/17	102	60 - 130	103	60 - 130	112	%				
7569030	O-TERPHENYL (sur.)	2014/07/18	101	50 - 130	87	50 - 130	107	%				
7569033	D10-ANTHRACENE (sur.)	2014/07/18	76	60 - 130	86	60 - 130	91	%				
7569033	D8-ACENAPHTHYLENE (sur.)	2014/07/18	69	50 - 130	81	50 - 130	88	%				
7569033	D8-NAPHTHALENE (sur.)	2014/07/18	68	50 - 130	84	50 - 130	90	%				
7569033	TERPHENYL-D14 (sur.)	2014/07/18	79	60 - 130	87	60 - 130	92	%				
7564206	Moisture	2014/07/16					<0.30	%				
7564900	Benzene	2014/07/15	99	60 - 140	109	60 - 140	<0.0050	mg/kg				
7564900	Ethylbenzene	2014/07/15	101	60 - 140	110	60 - 140	<0.010	mg/kg				
7564900	m & p-Xylene	2014/07/15	94	60 - 140	105	60 - 140	<0.040	mg/kg				
7564900	o-Xylene	2014/07/15	94	60 - 140	104	60 - 140	<0.040	mg/kg				
7564900	Styrene	2014/07/15					<0.030	mg/kg				
7564900	Toluene	2014/07/15	95	60 - 140	104	60 - 140	<0.020	mg/kg				
7564900	VH C6-C10	2014/07/15			79	60 - 140	<10	mg/kg				
7564900	Xylenes (Total)	2014/07/15					<0.040	mg/kg				
7565684	Total Aluminum (AI)	2014/07/16					<100	mg/kg	0.5	35	103	70 - 130
7565684	Total Antimony (Sb)	2014/07/16	93	75 - 125	95	75 - 125	<0.10	mg/kg	5.5	30	96	70 - 130
7565684	Total Arsenic (As)	2014/07/16	97	75 - 125	94	75 - 125	<0.50	mg/kg	8.6	30	96	70 - 130
7565684	Total Barium (Ba)	2014/07/16	NC	75 - 125	102	75 - 125	<0.10	mg/kg	2.4	35	101	70 - 130
7565684	Total Beryllium (Be)	2014/07/16	95	75 - 125	97	75 - 125	<0.40	mg/kg	NC	30		
7565684	Total Cadmium (Cd)	2014/07/16	102	75 - 125	103	75 - 125	<0.050	mg/kg	NC	30	101	70 - 130
7565684	Total Chromium (Cr)	2014/07/16	96	75 - 125	98	75 - 125	<1.0	mg/kg	0.5	30	103	70 - 130
7565684	Total Cobalt (Co)	2014/07/16	96	75 - 125	101	75 - 125	<0.30	mg/kg	6.5	30	89	70 - 130
7565684	Total Copper (Cu)	2014/07/16	NC	75 - 125	101	75 - 125	<0.50	mg/kg	1.4	30	90	70 - 130

QUALITY ASSURANCE REPORT(CONT'D)

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7565684	Total Lead (Pb)	2014/07/16	NC	75 - 125	105	75 - 125	<0.10	mg/kg	8.6	35	102	70 - 130
7565684	Total Manganese (Mn)	2014/07/16	NC	75 - 125	98	75 - 125	<0.20	mg/kg	5.0	30	96	70 - 130
7565684	Total Mercury (Hg)	2014/07/16	100	75 - 125	99	75 - 125	<0.050	mg/kg	NC	35	103	70 - 130
7565684	Total Molybdenum (Mo)	2014/07/16	93	75 - 125	89	75 - 125	<0.10	mg/kg	2.1	35	95	70 - 130
7565684	Total Nickel (Ni)	2014/07/16	98	75 - 125	98	75 - 125	<0.80	mg/kg	4.3	30	92	70 - 130
7565684	Total Selenium (Se)	2014/07/16	101	75 - 125	99	75 - 125	<0.50	mg/kg	NC	30		
7565684	Total Silver (Ag)	2014/07/16	100	75 - 125	101	75 - 125	<0.050	mg/kg	NC	35		
7565684	Total Strontium (Sr)	2014/07/16	NC	75 - 125	95	75 - 125	<0.10	mg/kg	3.3	35	97	70 - 130
7565684	Total Tin (Sn)	2014/07/16	NC	75 - 125	93	75 - 125	<0.10	mg/kg	15.4	35		
7565684	Total Titanium (Ti)	2014/07/16	NC	75 - 125	94	75 - 125	<1.0	mg/kg	0.07	35	106	70 - 130
7565684	Total Vanadium (V)	2014/07/16	NC	75 - 125	97	75 - 125	<2.0	mg/kg	1	30	101	70 - 130
7565684	Total Zinc (Zn)	2014/07/16	NC	75 - 125	103	75 - 125	<1.0	mg/kg	1	30	90	70 - 130
7565686	Soluble (2:1) pH	2014/07/17			100	97 - 103			0.6	20		
7568171	EPH (C10-C19)	2014/07/17	93	50 - 130	93	50 - 130	<100	mg/kg				
7568171	EPH (C19-C32)	2014/07/17	93	50 - 130	93	50 - 130	<100	mg/kg				
7568186	2-Methylnaphthalene	2014/07/17	86	50 - 130	85	50 - 130	<0.050	ug/g				
7568186	Acenaphthene	2014/07/17	87	50 - 130	86	50 - 130	<0.050	ug/g				
7568186	Acenaphthylene	2014/07/17	84	50 - 130	84	50 - 130	<0.050	ug/g				
7568186	Anthracene	2014/07/17	91	60 - 130	92	60 - 130	<0.050	ug/g				
7568186	Benzo(a)anthracene	2014/07/17	83	60 - 130	82	60 - 130	<0.050	ug/g				
7568186	Benzo(a)pyrene	2014/07/17	82	60 - 130	85	60 - 130	<0.050	ug/g				
7568186	Benzo(b&j)fluoranthene	2014/07/17	81	60 - 130	81	60 - 130	<0.050	ug/g				
7568186	Benzo(b)fluoranthene	2014/07/17					<0.050	ug/g				
7568186	Benzo(g,h,i)perylene	2014/07/17	71	60 - 130	74	60 - 130	<0.050	ug/g				
7568186	Benzo(k)fluoranthene	2014/07/17	79	60 - 130	81	60 - 130	<0.050	ug/g				
7568186	Chrysene	2014/07/17	84	60 - 130	87	60 - 130	<0.050	ug/g				
7568186	Dibenz(a,h)anthracene	2014/07/17	74	60 - 130	75	60 - 130	<0.050	ug/g				
7568186	Fluoranthene	2014/07/17	95	60 - 130	95	60 - 130	<0.050	ug/g				
7568186	Fluorene	2014/07/17	87	50 - 130	87	50 - 130	<0.050	ug/g				
7568186	Indeno(1,2,3-cd)pyrene	2014/07/17	76	60 - 130	78	60 - 130	<0.050	ug/g				
7568186	Naphthalene	2014/07/17	84	50 - 130	84	50 - 130	<0.050	ug/g				
7568186	Phenanthrene	2014/07/17	82	60 - 130	84	60 - 130	<0.050	ug/g				

QUALITY ASSURANCE REPORT(CONT'D)

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

			Matrix	Spike	Spiked	Blank	Method	Blank	RP	D	QC Sta	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits	% Recovery	QC Limits
7568186	Pyrene	2014/07/17	95	60 - 130	96	60 - 130	<0.050	ug/g				
7569030	EPH (C10-C19)	2014/07/18	NC	50 - 130	83	50 - 130	<100	mg/kg				
7569030	EPH (C19-C32)	2014/07/18	NC	50 - 130	86	50 - 130	<100	mg/kg				
7569033	2-Methylnaphthalene	2014/07/18	64	50 - 130	76	50 - 130	<0.050	ug/g				
7569033	Acenaphthene	2014/07/18	72	50 - 130	76	50 - 130	<0.050	ug/g				
7569033	Acenaphthylene	2014/07/18	62	50 - 130	75	50 - 130	<0.050	ug/g				
7569033	Anthracene	2014/07/18	75	60 - 130	78	60 - 130	<0.050	ug/g				
7569033	Benzo(a)anthracene	2014/07/18	83	60 - 130	81	60 - 130	<0.050	ug/g				
7569033	Benzo(a)pyrene	2014/07/18	73	60 - 130	77	60 - 130	<0.050	ug/g				
7569033	Benzo(b&j)fluoranthene	2014/07/18	81	60 - 130	79	60 - 130	<0.050	ug/g				
7569033	Benzo(b)fluoranthene	2014/07/18					<0.050	ug/g				
7569033	Benzo(g,h,i)perylene	2014/07/18	90	60 - 130	88	60 - 130	<0.050	ug/g				
7569033	Benzo(k)fluoranthene	2014/07/18	78	60 - 130	76	60 - 130	<0.050	ug/g				
7569033	Chrysene	2014/07/18	86	60 - 130	85	60 - 130	<0.050	ug/g				
7569033	Dibenz(a,h)anthracene	2014/07/18	86	60 - 130	85	60 - 130	<0.050	ug/g				
7569033	Fluoranthene	2014/07/18	70	60 - 130	75	60 - 130	<0.050	ug/g				
7569033	Fluorene	2014/07/18	69	50 - 130	73	50 - 130	<0.050	ug/g				
7569033	Indeno(1,2,3-cd)pyrene	2014/07/18	86	60 - 130	88	60 - 130	<0.050	ug/g				
7569033	Naphthalene	2014/07/18	61	50 - 130	73	50 - 130	<0.050	ug/g				
7569033	Phenanthrene	2014/07/18	68	60 - 130	74	60 - 130	<0.050	ug/g				
7569033	Pyrene	2014/07/18	70	60 - 130	76	60 - 130	<0.050	ug/g				

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Sampler Initials: BL

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam

4606 Canada Way, Burnaby, BC Canada V5G 1K5 Ph; 804 734 7276 Toll Free: 1 800 685 8566 Fax; 804 731 23

Maxxam Job#:

CHAIN OF CUSTODY RECORD

Page: / of H

K 015044

	Invoice To: Aequ	ire Report? Yes	VNO			Rei	port	To:							1 1 2 3	0.2	
ompany Name:	and the second of the second	CONTROL STATE OF THE COLOR		Company I	Vame:	med.		P25371					PO #:				
ontact Name:	Nicole McDo	reld / Britis	in Lenno	- Contact Na	ırne:						= -11-	-	Quotation #:				
ddress:	#320-4400 D	ominion Stree	t	Address:									Project # : /	2108-	02		
	Burnaby, BC	PC: V5G 46			PC:					Proj. Name: Le Kui							
hone / Fax#:	Ph:(604) 430-0	671Fax:(604)	430-0672	Phone / Fa	x#:	Pho				Fax:						+, Vanco	BC.
-mail				E-mail									Sampled By:	libera	De pies		
CSR	REQUIREMENTS SEI	RVICE REQUES		(TAT)													
CCME		(5 days for mos		N.S.O.S.O.M.								ANALYS	SIS REQUES	TED			
BC Water Qu Other DRINKING W		RUSH (Please of 1 Day Date Required:	contact the I 2 Day	ab) 3 Day				STEX)	втех)	Phenois by GCMS	z	zz	Suphate Suphate TDS Akainty	Terrest	3		
pecial Instructure eturn Cooler		mple Bottles (p	lease speci	ify)	MTBE	Ħ	У назымат	fors 1-4 Plus Flus I	oction Plus BT		- Sherood	Assistant Y Variation Y	orde Sut	100	neTh		9 9
					LIL.		V	HD (Fract)	TEX (Fra	by 4AAP	3 8 4	Plant Fledd /	Pended S))/0	111	
Sample	e Identification	Lab Identification	Sample Type	Date/Time Sampled	BTEXVPH	HAH	PAH	OCME-P	CCME B	*	Dissolve	Totals Met	Ohloride Total Sus	BOD	Ambestos		# of containers HOLD HOLD YES
	14-1(0.6)	YCHAG	SOIL	July 10/14			X				Π				X		2
	14-1(1,5)	VM130	1	1													2 1/8
7.,00	w14-1 (2.3)	k (21(3)							-								Source?
m	14-1 (3.1)	KC1132							_	AND ALTHOUGH STOLET	vorumounten in ei			-		-	S S
				-	-	+	\vdash	-	- 11/10	Malle	1000	KUMBU			+++	+	ア ヘ Mater housef
	14-1 (3,8)	KC1133			-	+	-	_	- 11	MD.	V. MUN	W NO ZEKOV	8/8 II				
	214-1 (46)	- X X X X X X X				-			_ MI 17/	out speed to a color of	man i N	id 1/inth	77.4				ア ト Drinking multiple
mwl	4-2 (0.8)	KCU35							B459	514							レレ言目
mw	14-2 (1,5)	Kellze					X		1	1-1	1 1	1 - 1			X		from a supply
MW	114-2 (2.1)	KCU37															
-	14-2 (3.1)	VCU38															es are
	14-2 (3.8)	KCU 29												1	++	+++	2 J segundar
	mark.		1/	1		-				++				++-		+++	dum sao
MA	14-2 (4,6)	Kalyo	V	- 0.5							DESCRIPTION OF THE PERSON OF T			Lab	oratory Use On	ilv.	- V Ø Ö
Relinquishe			1/1		ECCA		ate (Y 14/0	7/MM/D 7/14		Time:		Time Sensitive		lo 17,5	elpt (°C)		I Intact of Coolers
					Noon												

4606 Canada Way, Burnaby, BC Canada V5G 1K5 Ph; 804 734 7276 Toll Free; 1 800 865 8586 Fax; 804 731 2

Maxxam Job#:

CHAIN OF CUSTODY RECORD

Page: <u>2</u> of <u>4</u> K 015043

	ire Report? Yes No		Report To:			
mpany Name: Keystone Envir	onmental Ltd.	Company Name:			PO #:	
ntact Name: Nicole McDon	dd/B-in Lenkin		8		Ouotation #:	
ress: #320-4400 D	ominion Street	Address:			Project #: 12/08-02	
Burnaby, BC	PC:V5G 4G3			PC:	Proj. Name: Le Kui	
one / Fax#: Ph:(604) 430-0	671 Fax (604) 430-0672	Phone / Fax#:	Phi	Fax:	Location: 456 Pulon Street Vanco	un isc.
nall		E-mail	8		Sumpled By: B. Lenza.	
GULATORY REQUIREMENTS SEI	RVICE REQUESTED:					
111111111111111111111111111111111111111	Regular Turn Around Time (1	TAT)				
	(5 days for most tests)	2000		ANALY	SIS REQUESTED	
54	RUSH (Please contact the la		1 1 1 1			
Other	1 Day2 Day	3 Day		SWOG SWOG	Tecas Tecas 2	
British Co. Trick Co.	Date Required:			10 10 10 10 10 10 10 10	Sulphate TOO	
pecial Instructions: turn Cooler Ship Sa	mple Bottles (please specif	y)	# # # # # # # # # # # # # # # # # # #	1 Pust BITEX 1 Pust BITEX		
turn cooler Ship sa	inhie porties (biease specif	2	TEH TEH LEPHWEPH CONTRICTOR 14 Plus E	MOG CHOW T F		9 9
			EPH E	M AN MAN	Fluorida ad Solid ductivity ductivity	2 2
				BTEX (Fraction of the control of the		190
	Lab Sample	Date/Time	E L	T	# # # # # # # # # # # # # # # # # # #	of containers
Sample Identification	Identification Type	Sampled 🔓	PAH PAH	CCME CCME Prento TOG Dissa	Chilon Total Chilon Chilon Chilon Chilon Chilon Chilon Collision C	HOLL MES
MW14 - A	KC114 SOIL 3	Jucyloliy				20
mw 14-3 (0.8)	KCIIY2	1				レノる。
mw14-3 (1-5)	x C11 43					2 / 0
mw14-3 (2.3)	462144					Water Source?
mw14-3 (3.1)	ve1145				1636L III (I	
mw14-3 (3.8)	KC1146			THE PROPERTY OF STREET AND A STREET AND A STREET		2 / 3
mw14-3 (4.6)	RCUY7			THE REPORT OF THE PROPERTY OF THE PARTY OF T		ア レ Drinking
mw14-3 (4.6)	WILLIAM			B459514		
MW14-4(1-5)	ecii 99	×	X			L L E NO
mw14-4(2,3)	VC 1150					2 V V
mw14-4(3.1)	VEUST					2 / 3 8
mw14-40.8	VCICS9 V	4				Samples are
m.w 70,70				Windows and Windows	Laboratory Use Only	S C
*Relinquished by: Date (YY/M	M/DD): Time:	Received by:	Date (YY/MN	M/DD): Time Time	Temperature on Receipt (°C)	and Internation Continued
nimid - 14/07/	14 4:50p. Rubia	REBECO	1 au/4/07	1/19 16:50 Sensitive	Custody Se	eal Intact on Gobjer?
	10	BANTON			9,7,10/7,8,9	No
IS THE RESPONSIBILITY OF THE RELINCUISHER TO EX	SURE THE ADCURACY OF THE CHAIN OF CL	USTDOY RECORD, AN INCOMPL	ETE CHAIN OF CUSTODY)	MY RESULT IN ANALYTICAL TAT DELAYS.	White	Maiosam Yellow: Client

4606 Canada Way, Burnaby, BC Canada V5G 1K5 Ph; 604 734 7276 Toll Free: 1 800 665 8566 Fax; 604 731 23

CHAIN OF CUSTODY RECORD

Page: 3 of 4 K 015045

ompany Name:	Invoice To: Requ Keystone Envir			Com	pany Nan	ne:	Rej	port	To:							PO #:				-					
ontact Name:	Nicole Mc Do	reld/Brian	laman	Cont	tact Name	E										Quotati	m#:								
idress;	#320-4400 D	ominion Stree	e†	Addi	ess:											Project	* :		08		2				
	Burnaby, BC	PC: V5G 40		20								PC:				Proj. Na			Kul						
none / Fax#:	Ph:(604) 430-0	671 Fax: (604)	430-067	2 Pho	ne / Fax#:		Ph:					Fax:				Location					reco	+ Van	CO LIVE	, 13	۷,
mail				E-ma	ail											Sample	By:	5.4	enn	c-					
CSR CCME	QUIREMENTS SE	Regular Turn A (5 days for mos	round Time	(TAT)		_				_				ANA	ALYS	IS RE	QUE	STE	D						
BC Water Qua Other DRINKING WA	TER	RUSH (Please 1 Day Date Required:	contact the 2 Day	lab)	- E]		×	BTEX)		птех)	Phenols by GCMS	swoe		Ammonia	Uphate	Alkalinity			Fecel	1465				
eturn Cooler		emple Bottles (p	olease spec	cify)		MISS	12	Т назниват	Practions 1-4 Plus	ractions 2-4)	(Fraction 1 Plus BTEX)		MOG	Faid Acidfied?	Nitrae	Fluoride S	ad Solids-TSS		7.00	& E.coil	me7				ON C
Comple	dentification	Lab Identification	Sample Type	Date/ Samp		VOCAPH	НАЗ	AH A	CME-PHC (F	PHC (DOME BTEX	yd alo	90	Metais	ratis Wetals F.	Shoride	stal Suspend	00	000	olmorm, Total	2/05			of containers	YES
	-4(4,6)	KC1153	SOIL	July		>	- W	2	0	0	D &	F.	F		F 2	0	F a	m	0	0 4		-		46	V > 5
1,00000 10000		KCU54	1,	5-5	-114	+	+		-	+			-		+			-		+		-	-	2	10.000
		The state of the s	571	5//	. 10.	+	-	D.C.	-	+	+	(torres) (t							-	+		_		12	e lice
mw	14-5(0,6)	ICCUSS	SUIL	July	11/14	-	1	X	-	4	4								-	-	×	-		-	Sou
MW	14-5 (1.5)		_			1	1		_	4	-	WAW.	11681	APRIL LA	HAMA	W PAR			-					2	Water Source?
	-5 (2.1)	KCLLS7									4	m		7 W WA		(W/W								2	
MWK	(-5 (3.1)	KC1158										17.11	144	MILLIA	100	WATE								2	C C C C C C Drinking Water Source
	4-5 (3.6)	VC1159										45951	0											2	V
-	4-5 (4,6)	ILCU60									В	1 1	4	1 7	9 3	4	24	- 3						2	/ 0 3
MM		ZČUGI			_	1		Х	_												×			1	Samples are from a
	14-6(0,8)	ecu62				+		X								-	1				x		+	2	3.6
						+	-	^	\rightarrow	+		++	-		+	-+		-	_		1		\vdash		es are
	14-6 (1.5)	VCU63	W-		1	-	-		-	-		++	+		-	-	-	-	-	+				2 1	- B
MW	14-6(2.1)	ucasy	_ 1		V		_												1	house	y Use C	Will be		2	Vos
*Relinquished				Receiv	ed by:	A	Di	ate (Y	7/MM 07/	(DD)		Time:		Tin Sens				71	on Re	celpt	(°C)		dy Seal	ntacte	or Cooler?
	OF THE RELINCALISHER TO E		1	0	BANTO	J	E CHAIN	OF DO	STOOY M	T AV BOD	1		TAT INEL	E			91-	110	171	8,9	<i>i</i>	Yes	White: Max		No Clare

Maxxam

606 Canada Way, Burnaby, BC Canada V5G 1K5 Ph; 604 734 7276 Toll Free: 1 800 665 8566 Fay: 604 731

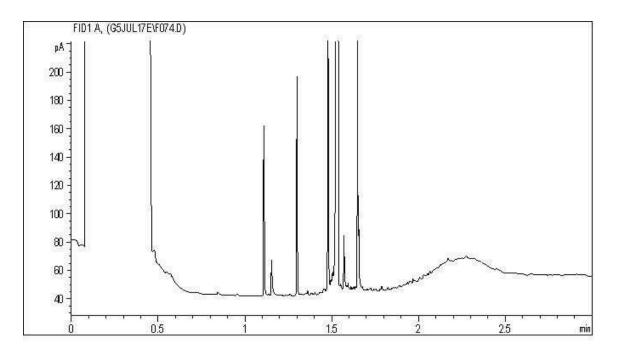
Maxxam Job#:

CHAIN OF CUSTODY RECORD

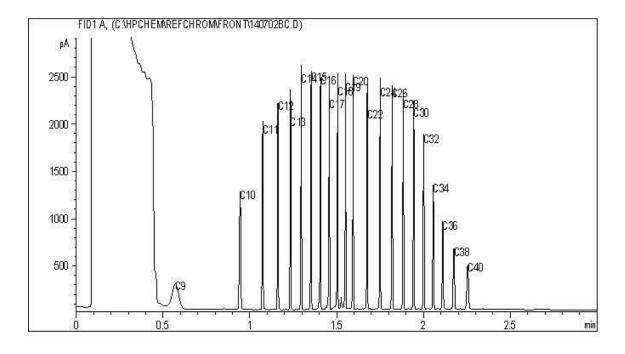
Page: 4 of 4

K 015046

Company Name: Keystone Environment Name: Noted and Name: Wiced and Name: #320-4400 Do Burnaby, BC Phone / Fax#: Phi(604) 430-06	d/Orion lenna	_	Report To:	PC: Fax:	PO#: Quotation #: Project #: 12/08-02 Proj. Name: Le tcus' Location: 456 Prison Street, Van course, &C Sampled By: B. Lenna
CCME BC Water Quality Other DRINKING WATER Special Instructions:	Avice REQUESTED: Regular Turn Around Time 5 days for most tests) RUSH (Please contact the 1 Day2 Day Date Required:	lab)	TEH TEPH MEPH MET INSTITUTE THE STEX)	Iton 1 Plus 6TEX) Plus 6TEX) Accepted by GCAKS Accepted A	SIS REGORDSTED Southware S
1 MW14-6 (2.7)	Lab Sample Type	Date/Time Sampled	VOCAVEHIC FINA	CCME BTEX (Frac	Nimate Chords Fig. Total Suspended Pt. BOD Collism. Total & Authoritos \$\sqrt{VLD}\$ \$\sqrt{VLD}\$
	1201166 Y C 1167 Y C 1168 Y C 1169 Y C 1170 K C 1171		x	B459514	X X X X X X X X X X X X X X X X X X X
8 μω14-7 (3.8) 9 μω 14-7 (4.6) 10 11	kc1132 kc1133				Samples are from a
*Relinquished by: Date (YY/MM Bota Lenn 14 (07/1) 15 THE RESPONSIBILITY OF THE RELINQUISHER TO ENS	4 4:50 Am fleby	Received by: Control Control		/4:58 Sensitive	Temperature on Receipt (°C) Custody Seal Intact on Copies 9,7,10/7,8,9 Yes No White: Manuara Yellow: Client


KEYSTONE ENVIRONMENTAL LTD

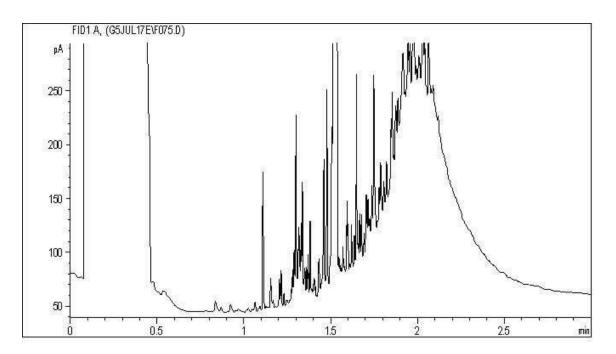
Client Project #: 12108-02


Site Reference: LE KUI; 456 PRIOR STREET, VANCOUVER BC

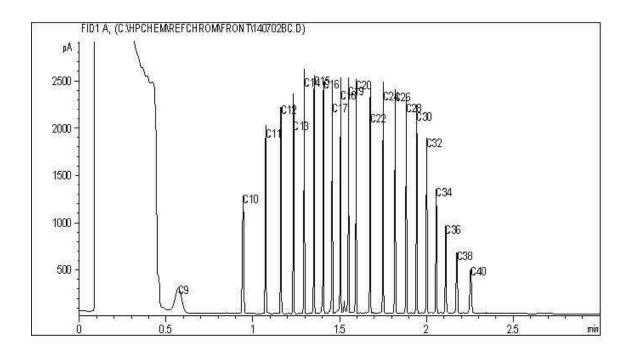
Client ID: MW14-1(0.6)

BC Hydrocarbons in Soil by GC/FID Chromatogram

Carbon Range Distribution - Reference Chromatogram


TYPICAL PRODUCT CARBON NUMBER RANGES

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

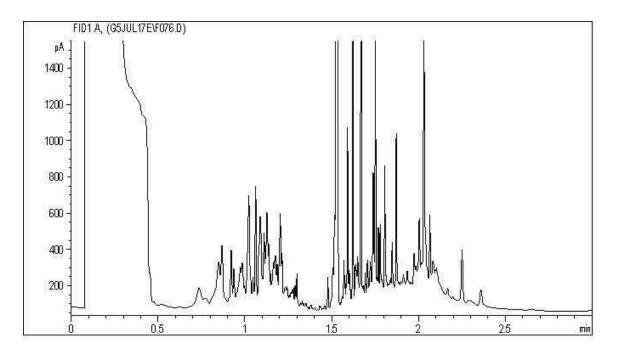

Site Reference: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Client ID: MW14-2(1.5)

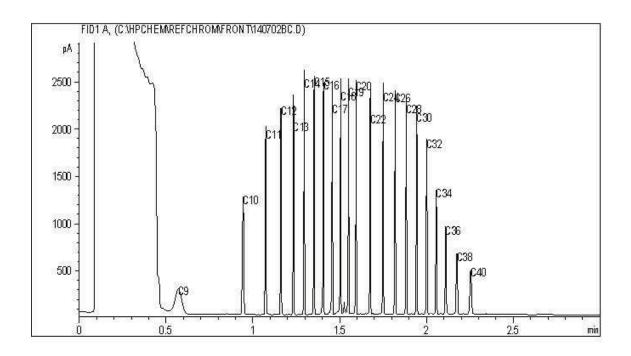
BC Hydrocarbons in Soil by GC/FID Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES


KEYSTONE ENVIRONMENTAL LTD

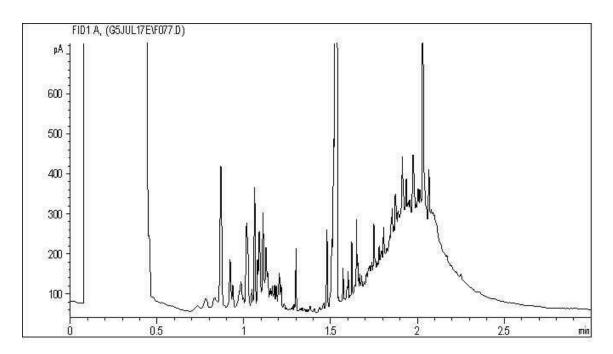
Client Project #: 12108-02


Site Reference: LE KUI; 456 PRIOR STREET, VANCOUVER BC

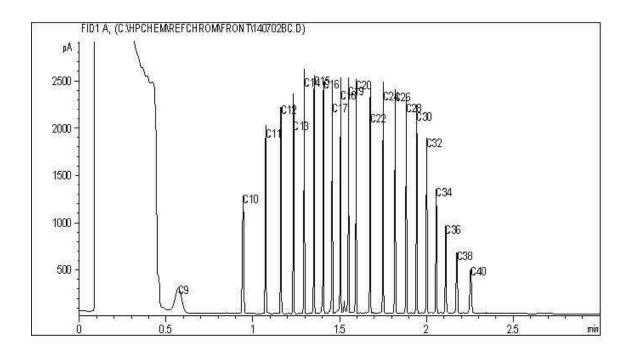
Client ID: MW14-4 (1.5)

BC Hydrocarbons in Soil by GC/FID Chromatogram

Carbon Range Distribution - Reference Chromatogram


TYPICAL PRODUCT CARBON NUMBER RANGES

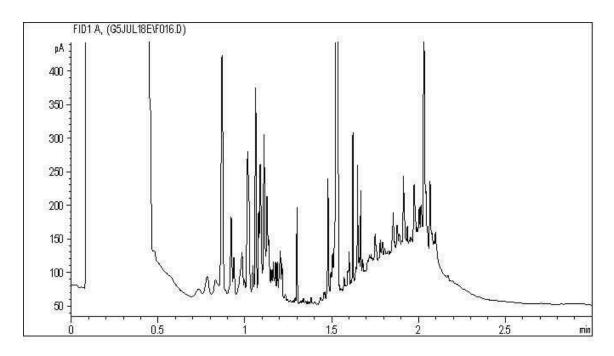
KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02


Site Reference: LE KUI; 456 PRIOR STREET, VANCOUVER BC

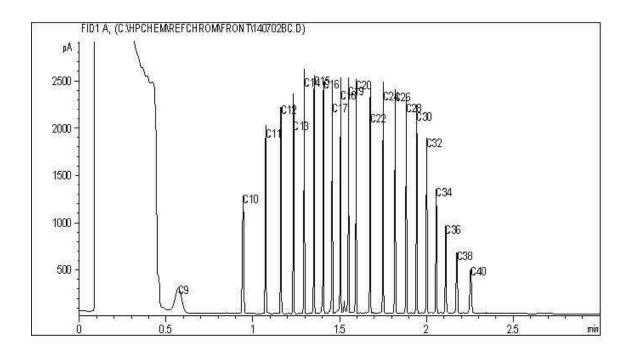
Client ID: MW14-5 (0.6)

BC Hydrocarbons in Soil by GC/FID Chromatogram

Carbon Range Distribution - Reference Chromatogram


TYPICAL PRODUCT CARBON NUMBER RANGES

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

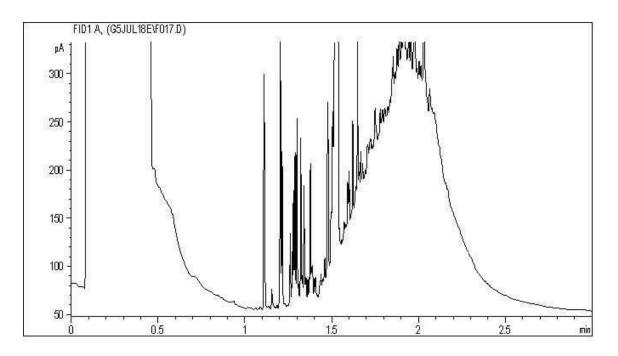

Site Reference: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Client ID: MW14-C

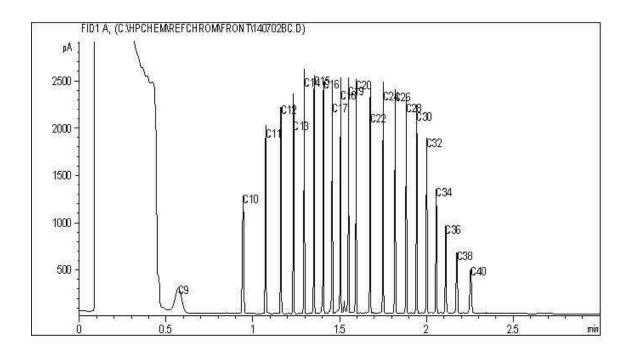
BC Hydrocarbons in Soil by GC/FID Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES


KEYSTONE ENVIRONMENTAL LTD

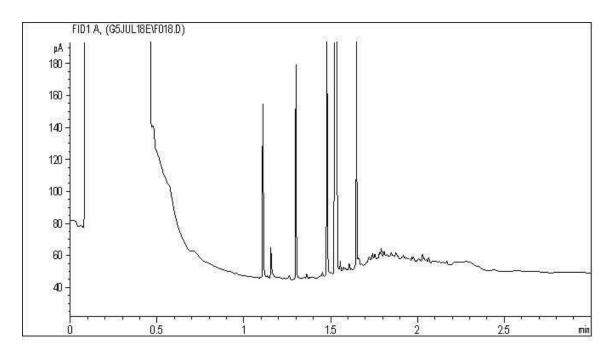
Client Project #: 12108-02


Site Reference: LE KUI; 456 PRIOR STREET, VANCOUVER BC

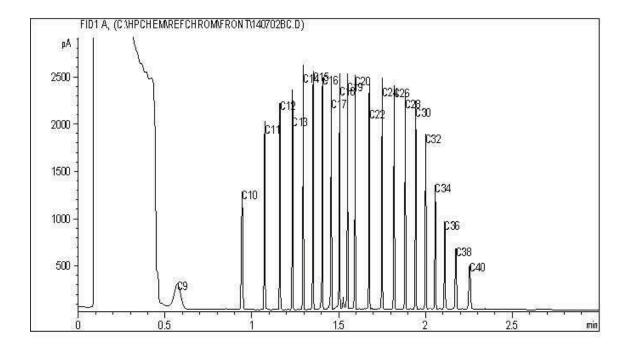
Client ID: MW14-6 (0.8)

BC Hydrocarbons in Soil by GC/FID Chromatogram

Carbon Range Distribution - Reference Chromatogram


TYPICAL PRODUCT CARBON NUMBER RANGES

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02


Site Reference: LE KUI; 456 PRIOR STREET, VANCOUVER BC

Client ID: MW14-7 (3.1)

BC Hydrocarbons in Soil by GC/FID Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

Your Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Your C.O.C. #: K008066

Attention:Nicole MacDonald

KEYSTONE ENVIRONMENTAL LTD SUITE 320 4400 DOMINION STREET BURNABY, BC CANADA V5G 4G3

Report Date: 2014/07/22

Report #: R1607799

Version: 1

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B459953 Received: 2014/07/15, 15:55

Sample Matrix: Water # Samples Received: 8

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX/MTBE LH, VH, F1 SIM/MS	1	2014/07/16	2014/07/17	BBY8-SOP-00010	EPA 8260C
Phenols in Water by GCMS	4	2014/07/17	2014/07/21	BBY8SOP-00025	EPA 8270D
Hardness (calculated as CaCO3)	7	N/A	2014/07/21	BBY7SOP-00002	EPA 6020A
Mercury (Dissolved) by CVAF	7	N/A	2014/07/21	BBY7SOP-00015	BC MOE Lab Manual
Extrac. Pet HC when LEPH/HEPH required	7	2014/07/17	2014/07/18	BBY8SOP-00029	BC Env. Lab Manual
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	7	N/A	2014/07/21	BBY7SOP-00002	EPA 6020A
Elements by CRC ICPMS (dissolved)	7	N/A	2014/07/19	BBY7SOP-00002	EPA 6020A
PAH in Water by GC/MS (SIM)	7	2014/07/17	2014/07/18	BBY8SOP-00021	EPA 8270D
Total LMW, HMW, Total PAH Calc	7	N/A	2014/07/21	BBY WI-00033	BC MOE Lab Method
Filter and HNO3 Preserve for Metals	7	N/A	2014/07/19	BBY6WI-00001	EPA 200.2
pH Water (1)	4	N/A	2014/07/16	BBY6SOP-00026	SM-4500H+B
Phenols (Totals) in Water by GCMS	4	2014/07/16	2014/07/22	BBY8SOP-00025	EPA SW 846 8270D
EPH less PAH in Water by GC/FID	7	N/A	2014/07/21	BBY WI-00033	BC MOE Lab Method
Extra VOCs in Water by HS GC/MS	3	N/A	2014/07/16	BRN SOP 00302 R8.0	EPA 8260C
VOCs, VH, F1, LH in Water by HS GC/MS	3	2014/07/16	2014/07/16	BBY8-SOP-0009	EPA 8260C
Volatile HC-BTEX	3	N/A	2014/07/17	BBY WI-00033	BC MOE Lab Method
Volatile HC-BTEX	1	N/A	2014/07/18	BBY WI-00033	BC MOE Lab Method

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Encryption Key

Jennifer Villocero 22 Jul 2014 17:03:58 -07:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Amandeep Nagra, Account Specialist

Email: ANagra@maxxam.ca Phone# (604)639-2602

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total Cover Pages : 1 Page 1 of 29

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		KC4032	KC4033	KC4035	KC4036	KC4037	KC4038	KC4039						
Sampling Date		2014/07/15	2014/07/15	2014/07/15	2014/07/15	2014/07/15	2014/07/15	2014/07/15						
COC Number		K008066												
	Units	MW14-1	MW14-2	MW14-4	MW14-5	MW14-6	MW14-7	MW14-A	QC Batch					
Calculated Parameters	Calculated Parameters													
Filter and HNO3 Preservation	N/A	FIELD	ONSITE											
Physical Properties	Physical Properties													
рН	рН	7.88				7.21	7.25	7.23	7567007					

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

SEMIVOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		KC4032	KC4037	KC4038	KC4039		
Sampling Date		2014/07/15	2014/07/15	2014/07/15	2014/07/15		
COC Number		К008066	К008066	К008066	K008066		
	Units	MW14-1	MW14-6	MW14-7	MW14-A	RDL	QC Batch
Phenols							
Total Monochlorophenols	ug/L	<0.63	<0.63	<0.63	<0.63	0.63	7565901
Total Dichlorophenols	ug/L	<0.63	<0.63	<0.63	<0.63	0.63	7565901
Total Trichlorophenols	ug/L	<0.63	<0.63	<0.63	<0.63	0.63	7565901
Total Tetrachlorophenols	ug/L	<0.63	<0.63	<0.63	<0.63	0.63	7565901
Total Chlorophenols	ug/L	<0.63	<0.63	<0.63	<0.63	0.63	7565901
SEMI-VOLATILE ORGANICS							
2-chlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
3 & 4-chlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,4 + 2,5-Dichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,3-Dichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,6-dichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
3,5-Dichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
3,4-Dichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,4,5-trichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,4,6-trichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,3,5-trichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,3,6-Trichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,3,4-trichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
3,4,5-Trichlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,3,4,6-tetrachlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,3,4,5-tetrachlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
2,3,5,6-tetrachlorophenol	ug/L	<0.10	<0.10	<0.10	<0.10	0.10	7568135
Pentachlorophenol	ug/L	<0.63 (1)	<0.63 (1)	<0.63 (1)	<0.63 (1)	0.63	7568135
Surrogate Recovery (%)							
2,4,6-TRIBROMOPHENOL (sur.)	%	85	88	83	90		7568135
2-FLUOROPHENOL (sur.)	%	36	21	18 (2)	28	_	7568135

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to matrix interference.

⁽²⁾ Surrogate recovery below acceptance criteria. Unable to reanalyze due to insufficient sample.

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

VOLATILE ORGANICS BY GC-MS (WATER)

T						
Maxxam ID		KC4033	KC4034	KC4036		
Sampling Date		2014/07/15	2014/07/15	2014/07/15		
COC Number		K008066	К008066	K008066		
	Units	MW14-2	MW14-3	MW14-5	RDL	QC Batch
Volatiles						
2-Butanone (MEK)	ug/L	<10	<10	<10	10	7566993
4-Methyl-2-pentanone (MIBK)	ug/L	<10	<10	<10	10	7566993
Surrogate Recovery (%)						
1,4-Difluorobenzene (sur.)	%	95	97	97		7566993
4-Bromofluorobenzene (sur.)	%	98	99	99		7566993
D4-1,2-Dichloroethane (sur.)	%	88	89	88		7566993
RDL = Reportable Detection Lim	it		•			

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

BCCSR BTEX/VPH IN WATER (WATER)

Maxxam ID		KC4035		
Sampling Date		2014/07/15		
COC Number		K008066		
	Units	MW14-4	RDL	QC Batch
Volatiles				
VPH (VHW6 to 10 - BTEX)	ug/L	3300	300	7565903
Benzene	ug/L	100	0.40	7566909
Toluene	ug/L	10	0.40	7566909
Ethylbenzene	ug/L	640	0.40	7566909
m & p-Xylene	ug/L	33	0.40	7566909
o-Xylene	ug/L	3.7	0.40	7566909
Styrene	ug/L	<0.40	0.40	7566909
Xylenes (Total)	ug/L	37	0.40	7566909
VH C6-C10	ug/L	4100	300	7566909
Surrogate Recovery (%)		•		
1,4-Difluorobenzene (sur.)	%	103		7566909
4-Bromofluorobenzene (sur.)	%	98		7566909
D4-1,2-Dichloroethane (sur.)	%	104		7566909
RDL = Reportable Detection Lir	nit			

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

LEPH & HEPH FOR CSR IN WATER (WATER)

Maxxam ID		KC4032	KC4033		KC4035		KC4036		KC4037		
Sampling Date		2014/07/15	2014/07/15		2014/07/15		2014/07/15		2014/07/15		
COC Number		K008066	K008066		K008066		K008066		K008066		
	Units	MW14-1	MW14-2	RDL	MW14-4	RDL	MW14-5	RDL	MW14-6	RDL	QC Batch
Polycyclic Aromatics											
Low Molecular Weight PAH`s	ug/L	<0.24	<0.24	0.24	200	0.50	1.8	0.24	6.9	0.24	7565899
High Molecular Weight PAH`s	ug/L	<0.050	0.076	0.050	<0.050	0.050	<0.050	0.050	1.1	0.11	7565899
Total PAH	ug/L	<0.24	<0.24	0.24	200	0.50	1.8	0.24	8.0	0.24	7565899
Naphthalene	ug/L	<0.10	<0.10	0.10	110 (1)	0.50	1.3	0.10	2.7	0.10	7568276
2-Methylnaphthalene	ug/L	<0.10	<0.10	0.10	92 (1)	0.50	0.42	0.10	1.6	0.10	7568276
Quinoline	ug/L	<0.24	<0.24	0.24	<0.24	0.24	<0.24	0.24	<0.24	0.24	7568276
Acenaphthylene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	7568276
Acenaphthene	ug/L	<0.050	<0.050	0.050	0.26	0.050	0.057	0.050	1.1	0.050	7568276
Fluorene	ug/L	<0.050	<0.050	0.050	0.13	0.050	<0.050	0.050	0.62	0.050	7568276
Phenanthrene	ug/L	<0.050	<0.050	0.050	0.078	0.050	<0.050	0.050	0.76	0.050	7568276
Anthracene	ug/L	<0.010	<0.010	0.010	<0.010	0.010	<0.010	0.010	0.16	0.010	7568276
Acridine	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	7568276
Fluoranthene	ug/L	<0.020	0.027	0.020	<0.020	0.020	<0.020	0.020	0.36	0.020	7568276
Pyrene	ug/L	<0.020	0.026	0.020	<0.020	0.020	<0.020	0.020	0.37	0.020	7568276
Benzo(a)anthracene	ug/L	<0.010	0.011	0.010	<0.010	0.010	<0.010	0.010	0.11	0.010	7568276
Chrysene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	0.16	0.050	7568276
Benzo(b&j)fluoranthene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.11 (2)	0.11	7568276
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	7568276
Benzo(a)pyrene	ug/L	<0.0090	0.012	0.0090	<0.0090	0.0090	<0.0090	0.0090	0.084	0.0090	7568276
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	7568276
Dibenz(a,h)anthracene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	7568276
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	<0.050	0.050	7568276
Calculated Parameters											
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	0.20	3.3	0.20	<0.20	0.20	<0.20	0.20	7565902
HEPH (C19-C32 less PAH)	mg/L	<0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	0.64	0.20	7565902
Ext. Pet. Hydrocarbon											
EPH (C10-C19)	mg/L	<0.20	<0.20	0.20	3.4	0.20	<0.20	0.20	<0.20	0.20	7568291
EPH (C19-C32)	mg/L	<0.20	<0.20	0.20	<0.20	0.20	<0.20	0.20	0.64	0.20	7568291
Surrogate Recovery (%)											
O-TERPHENYL (sur.)	%	104	103		105		104		105		7568291
D10-ANTHRACENE (sur.)	%	116	111		113		108		112		7568276
D8-ACENAPHTHYLENE (sur.)	%	107	100		104		100		104		7568276
D8-NAPHTHALENE (sur.)	%	104	101		115		99		104		7568276

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

⁽²⁾ RDL raised due to sample matrix interference.

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

LEPH & HEPH FOR CSR IN WATER (WATER)

Maxxam ID		KC4032	KC4033		KC4035		KC4036		KC4037		
Sampling Date		2014/07/15	2014/07/15		2014/07/15		2014/07/15		2014/07/15		
COC Number		K008066	K008066		K008066		K008066		K008066		
	Units	MW14-1	MW14-2	RDL	MW14-4	RDL	MW14-5	RDL	MW14-6	RDL	QC Batch
D9-Acridine	%	95	87		93		90		93		7568276
TERPHENYL-D14 (sur.)	%	109	96		95		93		87		7568276
RDL = Reportable Detection	ı Limit	•									•

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

LEPH & HEPH FOR CSR IN WATER (WATER)

Maxxam ID		KC4038	KC4039		
Sampling Date		2014/07/15	2014/07/15		
COC Number		K008066	K008066		
	Units	MW14-7	MW14-A	RDL	QC Batch
Polycyclic Aromatics	1				40 2000
, ,	,	20.24	7.4	0.24	75.55.000
Low Molecular Weight PAH's	ug/L	<0.24	7.1	0.24	7565899
High Molecular Weight PAH's	ug/L	0.23	0.91	0.050	7565899
Total PAH	ug/L	0.36	8.0	0.24	7565899
Naphthalene	ug/L	<0.10	2.8	0.10	7568276
2-Methylnaphthalene	ug/L	<0.10	1.6	0.10	7568276
Quinoline	ug/L	<0.24	<0.24	0.24	7568276
Acenaphthylene	ug/L	<0.050	<0.050	0.050	7568276
Acenaphthene	ug/L	<0.050	1.3	0.050	7568276
Fluorene	ug/L	<0.050	0.62	0.050	7568276
Phenanthrene	ug/L	0.12	0.72	0.050	7568276
Anthracene	ug/L	0.018	0.14	0.010	7568276
Acridine	ug/L	<0.050	<0.050	0.050	7568276
Fluoranthene	ug/L	0.088	0.30	0.020	7568276
Pyrene	ug/L	0.087	0.29	0.020	7568276
Benzo(a)anthracene	ug/L	0.031	0.073	0.010	7568276
Chrysene	ug/L	<0.050	0.12	0.050	7568276
Benzo(b&j)fluoranthene	ug/L	<0.050	0.077	0.050	7568276
Benzo(k)fluoranthene	ug/L	<0.050	<0.050	0.050	7568276
Benzo(a)pyrene	ug/L	0.026	0.054	0.0090	7568276
Indeno(1,2,3-cd)pyrene	ug/L	<0.050	<0.050	0.050	7568276
Dibenz(a,h)anthracene	ug/L	<0.050	<0.050	0.050	7568276
Benzo(g,h,i)perylene	ug/L	<0.050	<0.050	0.050	7568276
Calculated Parameters					
LEPH (C10-C19 less PAH)	mg/L	<0.20	<0.20	0.20	7565902
HEPH (C19-C32 less PAH)	mg/L	<0.20	0.54	0.20	7565902
Ext. Pet. Hydrocarbon	<u> </u>				
EPH (C10-C19)	mg/L	<0.20	<0.20	0.20	7568291
EPH (C19-C32)	mg/L	<0.20	0.54	0.20	7568291
Surrogate Recovery (%)					
O-TERPHENYL (sur.)	%	103	102		7568291
D10-ANTHRACENE (sur.)	%	105	113		7568276
D8-ACENAPHTHYLENE (sur.)	%	98	103		7568276
D8-NAPHTHALENE (sur.)	%	102	103		7568276
D9-Acridine	%	90	95		7568276
TERPHENYL-D14 (sur.)	%	95	88		7568276
RDL = Reportable Detection Lir	l .			1	
102 - Reportable Detection Life					

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Maxxam ID		KC4032	KC4032	KC4033	KC4035	KC4036	KC4037	KC4038		
Sampling Date		2014/07/15	2014/07/15	2014/07/15		2014/07/15	2014/07/15			
COC Number		K008066	K008066	K008066	K008066	K008066	K008066	K008066		
	Units	MW14-1	MW14-1 Lab-Dup	MW14-2	MW14-4	MW14-5	MW14-6	MW14-7	RDL	QC Batch
Misc. Inorganics										
Dissolved Hardness (CaCO3)	mg/L	57.2		330	117	233	260	76.6	0.50	7565847
Elements	•			•	•			•	,	
Dissolved Mercury (Hg)	ug/L	<0.010	<0.010	<0.010	<0.010	0.013	<0.010	<0.010	0.010	7571873
Dissolved Metals by ICPMS	•			•	•			•	,	
Dissolved Aluminum (AI)	ug/L	28.6		11.3	46.7	365	17.5	15.3	3.0	7569943
Dissolved Antimony (Sb)	ug/L	0.74		0.59	<0.50	0.79	<0.50	<0.50	0.50	7569943
Dissolved Arsenic (As)	ug/L	0.30		1.19	1.65	0.76	3.78	1.00	0.10	7569943
Dissolved Barium (Ba)	ug/L	12.7		90.6	48.6	53.0	213	12.9	1.0	7569943
Dissolved Beryllium (Be)	ug/L	<0.10		<0.10	<0.10	0.11	<0.10	<0.10	0.10	7569943
Dissolved Bismuth (Bi)	ug/L	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	1.0	7569943
Dissolved Boron (B)	ug/L	<50		593	77	400	93	<50	50	7569943
Dissolved Cadmium (Cd)	ug/L	0.016		0.100	0.085	0.051	<0.010	0.176	0.010	7569943
Dissolved Chromium (Cr)	ug/L	<1.0		<1.0	<1.0	<1.0	<1.0	<1.0	1.0	7569943
Dissolved Cobalt (Co)	ug/L	1.09		4.59	15.2	17.9	10.7	9.29	0.50	7569943
Dissolved Copper (Cu)	ug/L	1.60		0.62	0.40	2.97	0.24	1.77	0.20	7569943
Dissolved Iron (Fe)	ug/L	5.0		2960	5230	1380	22800	215	5.0	7569943
Dissolved Lead (Pb)	ug/L	<0.20		<0.20	10.5	<0.20	<0.20	<0.20	0.20	7569943
Dissolved Lithium (Li)	ug/L	<5.0		<5.0	<5.0	10.5	<5.0	<5.0	5.0	7569943
Dissolved Manganese (Mn)	ug/L	155		1150	1930	2160	3530	943	1.0	7569943
Dissolved Molybdenum (Mo)	ug/L	14.7		1.5	<1.0	<1.0	1.3	<1.0	1.0	7569943
Dissolved Nickel (Ni)	ug/L	1.2		5.6	16.4	32.2	7.4	14.1	1.0	7569943
Dissolved Selenium (Se)	ug/L	0.11		0.17	0.17	0.21	<0.10	<0.10	0.10	7569943
Dissolved Silicon (Si)	ug/L	4270		7500	7770	10800	11100	7310	100	7569943
Dissolved Silver (Ag)	ug/L	<0.020		<0.020	<0.020	<0.020	<0.020	<0.020	0.020	7569943
Dissolved Strontium (Sr)	ug/L	77.5		983	193	318	611	174	1.0	7569943
Dissolved Thallium (TI)	ug/L	<0.050		<0.050	0.103	0.146	<0.050	<0.050	0.050	7569943
Dissolved Tin (Sn)	ug/L	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7569943
Dissolved Titanium (Ti)	ug/L	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7569943
Dissolved Uranium (U)	ug/L	<0.10		0.60	<0.10	0.56	0.22	<0.10	0.10	7569943
Dissolved Vanadium (V)	ug/L	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	5.0	7569943
Dissolved Zinc (Zn)	ug/L	<5.0		6.2	6.8	18.0	<5.0	11.0	5.0	7569943
Dissolved Zirconium (Zr)	ug/L	<0.50		<0.50	<0.50	<0.50	<0.50	<0.50	0.50	7569943
Dissolved Calcium (Ca)	mg/L	19.9		117	35.3	70.0	89.2	23.6	0.050	7565848
Dissolved Magnesium (Mg)	mg/L	1.79		8.98	6.91	14.3	8.97	4.28	0.050	7565848

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Maxxam ID		KC4032	KC4032	KC4033	KC4035	KC4036	KC4037	KC4038		
Sampling Date		2014/07/15	2014/07/15	2014/07/15	2014/07/15	2014/07/15	2014/07/15	2014/07/15		
COC Number		K008066								
	Units	MW14-1	MW14-1	MW14-2	MW14-4	MW14-5	MW14-6	MW14-7	RDL	QC Batch
			Lab-Dup							,
Dissolved Potassium (K)	mg/L	2.49		6.54	3.51	5.05	6.14	1.48	0.050	7565848
Dissolved Sodium (Na)	mg/L	4.98		17.4	12.4	34.2	12.6	5.83	0.050	7565848
Dissolved Sulphur (S)	mg/L	<3.0		11.0	28.7	28.8	27.9	16.5	3.0	7565848

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Maxxam ID		KC4039	KC4039		
Sampling Date		2014/07/15	2014/07/15		
COC Number		K008066	K008066		
	Units	MW14-A	MW14-A Lab-Dup	RDL	QC Batch
Misc. Inorganics					
Dissolved Hardness (CaCO3)	mg/L	262		0.50	7565847
Elements					
Dissolved Mercury (Hg)	ug/L	<0.010		0.010	7571873
Dissolved Metals by ICPMS			•	,	
Dissolved Aluminum (AI)	ug/L	17.2	16.3	3.0	7569943
Dissolved Antimony (Sb)	ug/L	<0.50	<0.50	0.50	7569943
Dissolved Arsenic (As)	ug/L	3.72	3.80	0.10	7569943
Dissolved Barium (Ba)	ug/L	221	213	1.0	7569943
Dissolved Beryllium (Be)	ug/L	<0.10	<0.10	0.10	7569943
Dissolved Bismuth (Bi)	ug/L	<1.0	<1.0	1.0	7569943
Dissolved Boron (B)	ug/L	88	88	50	7569943
Dissolved Cadmium (Cd)	ug/L	<0.010	<0.010	0.010	7569943
Dissolved Chromium (Cr)	ug/L	<1.0	<1.0	1.0	7569943
Dissolved Cobalt (Co)	ug/L	9.94	10.1	0.50	7569943
Dissolved Copper (Cu)	ug/L	0.23	0.21	0.20	7569943
Dissolved Iron (Fe)	ug/L	23400	22900	5.0	7569943
Dissolved Lead (Pb)	ug/L	<0.20	<0.20	0.20	7569943
Dissolved Lithium (Li)	ug/L	<5.0	<5.0	5.0	7569943
Dissolved Manganese (Mn)	ug/L	3580	3580	1.0	7569943
Dissolved Molybdenum (Mo)	ug/L	1.3	1.3	1.0	7569943
Dissolved Nickel (Ni)	ug/L	7.4	7.3	1.0	7569943
Dissolved Selenium (Se)	ug/L	<0.10	0.10	0.10	7569943
Dissolved Silicon (Si)	ug/L	11600	11100	100	7569943
Dissolved Silver (Ag)	ug/L	<0.020	<0.020	0.020	7569943
Dissolved Strontium (Sr)	ug/L	591	609	1.0	7569943
Dissolved Thallium (TI)	ug/L	<0.050	<0.050	0.050	7569943
Dissolved Tin (Sn)	ug/L	<5.0	<5.0	5.0	7569943
Dissolved Titanium (Ti)	ug/L	<5.0	<5.0	5.0	7569943
Dissolved Uranium (U)	ug/L	0.22	0.22	0.10	7569943
Dissolved Vanadium (V)	ug/L	<5.0	<5.0	5.0	7569943
Dissolved Zinc (Zn)	ug/L	<5.0	<5.0	5.0	7569943
Dissolved Zirconium (Zr)	ug/L	<0.50	<0.50	0.50	7569943
Dissolved Calcium (Ca)	mg/L	91.0		0.050	7565848
Dissolved Magnesium (Mg)	mg/L	8.52		0.050	7565848
RDL = Reportable Detection Li	mit			•	
Lab-Dup = Laboratory Initiated	d Duplic	ate			

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

CSR DISSOLVED METALS IN WATER WITH CV HG (WATER)

Maxxam ID		KC4039	KC4039		
Sampling Date		2014/07/15	2014/07/15		
COC Number		K008066	K008066		
	Units	MW14-A	MW14-A Lab-Dup	RDL	QC Batch
Dissolved Potassium (K)	mg/L	6.05		0.050	7565848
Dissolved Sodium (Na)	mg/L	12.2		0.050	7565848
Dissolved Sulphur (S)	mg/L	29.6		3.0	7565848
DDI Damantalila Data dian II	•.				

RDL = Reportable Detection Limit

Lab-Dup = Laboratory Initiated Duplicate

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

CSR VOC + VPH IN WATER (WATER)

Maxxam ID		KC4033	KC4034	KC4036		
Sampling Date		2014/07/15	2014/07/15	2014/07/15		
COC Number		K008066	K008066	K008066		
	Units	MW14-2	MW14-3	MW14-5	RDL	QC Batch
Volatiles						
VPH (VHW6 to 10 - BTEX)	ug/L	<300	<300	<300	300	7565903
Chloromethane	ug/L	<1.0	<1.0	<1.0	1.0	7566912
Vinyl chloride	ug/L	<0.50	<0.50	<0.50	0.50	7566912
Chloroethane	ug/L	<1.0	<1.0	<1.0	1.0	7566912
Trichlorofluoromethane	ug/L	<4.0	<4.0	<4.0	4.0	7566912
1,1,2Trichloro-1,2,2Trifluoroethane	ug/L	<2.0	<2.0	<2.0	2.0	7566912
Dichlorodifluoromethane	ug/L	<2.0	<2.0	<2.0	2.0	7566912
1,1-dichloroethene	ug/L	<0.50	<0.50	<0.50	0.50	7566912
Dichloromethane	ug/L	<2.0	<2.0	<2.0	2.0	7566912
trans-1,2-dichloroethene	ug/L	<1.0	<1.0	<1.0	1.0	7566912
1,1-dichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7566912
cis-1,2-dichloroethene	ug/L	<1.0	<1.0	<1.0	1.0	7566912
Chloroform	ug/L	<1.0	<1.0	<1.0	1.0	7566912
1,1,1-trichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7566912
1,2-dichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7566912
Carbon tetrachloride	ug/L	<0.50	<0.50	<0.50	0.50	7566912
Benzene	ug/L	<0.40	<0.40	<0.40	0.40	7566912
1,2-dichloropropane	ug/L	<0.50	<0.50	<0.50	0.50	7566912
cis-1,3-dichloropropene	ug/L	<1.0	<1.0	<1.0	1.0	7566912
trans-1,3-dichloropropene	ug/L	<1.0	<1.0	<1.0	1.0	7566912
Bromomethane	ug/L	<1.0	<1.0	<1.0	1.0	7566912
1,1,2-trichloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7566912
Trichloroethene	ug/L	<0.50	<0.50	<0.50	0.50	7566912
Chlorodibromomethane	ug/L	<1.0	<1.0	<1.0	1.0	7566912
1,2-dibromoethane	ug/L	<0.20	<0.20	<0.20	0.20	7566912
1,3-Butadiene	ug/L	<5.0	<5.0	<5.0	5.0	7566912
Tetrachloroethene	ug/L	<0.50	<0.50	<0.50	0.50	7566912
Bromodichloromethane	ug/L	<1.0	<1.0	<1.0	1.0	7566912
Toluene	ug/L	<0.40	<0.40	<0.40	0.40	7566912
Ethylbenzene	ug/L	<0.40	<0.40	0.56	0.40	7566912
m & p-Xylene	ug/L	<0.40	<0.40	5.8	0.40	7566912
Bromoform	ug/L	<1.0	<1.0	<1.0	1.0	7566912
Styrene	ug/L	<0.50	<0.50	<0.50	0.50	7566912
o-Xylene	ug/L	<0.40	<0.40	0.49	0.40	7566912
Xylenes (Total)	ug/L	<0.40	<0.40	6.3	0.40	7566912
RDL = Reportable Detection Limit					•	

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

CSR VOC + VPH IN WATER (WATER)

Maxxam ID		KC4033	KC4034	KC4036		
Sampling Date		2014/07/15	2014/07/15	2014/07/15		
COC Number		K008066	K008066	K008066		
	Units	MW14-2	MW14-3	MW14-5	RDL	QC Batch
1,1,1,2-tetrachloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7566912
1,1,2,2-tetrachloroethane	ug/L	<0.50	<0.50	<0.50	0.50	7566912
1,2-dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	7566912
1,3-dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	7566912
1,4-dichlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	7566912
Chlorobenzene	ug/L	<0.50	<0.50	<0.50	0.50	7566912
Dibromomethane	ug/L	<0.90	<0.90	<0.90	0.90	7566912
Bromobenzene	ug/L	<2.0	<2.0	<2.0	2.0	7566912
VH C6-C10	ug/L	<300	<300	<300	300	7566912
Surrogate Recovery (%)						
1,4-Difluorobenzene (sur.)	%	101	103	98		7566912
4-Bromofluorobenzene (sur.)	%	96	96	100		7566912
D4-1,2-Dichloroethane (sur.)	%	110	88	92		7566912
RDL = Reportable Detection Limit						

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	22.7°C
Package 2	25.3°C
Package 3	20.3°C

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

			Matrix	Spike	Spiked	Blank	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7566909	1,4-Difluorobenzene (sur.)	2014/07/17	105	70 - 130	105	70 - 130	101	%		
7566909	4-Bromofluorobenzene (sur.)	2014/07/17	98	70 - 130	100	70 - 130	98	%		
7566909	D4-1,2-Dichloroethane (sur.)	2014/07/17	103	70 - 130	103	70 - 130	108	%		
7566912	1,4-Difluorobenzene (sur.)	2014/07/16	103	70 - 130	100	70 - 130	103	%		
7566912	4-Bromofluorobenzene (sur.)	2014/07/16	102	70 - 130	103	70 - 130	98	%		
7566912	D4-1,2-Dichloroethane (sur.)	2014/07/16	94	70 - 130	97	70 - 130	87	%		
7566993	1,4-Difluorobenzene (sur.)	2014/07/16	98	70 - 130	98	70 - 130	97	%		
7566993	4-Bromofluorobenzene (sur.)	2014/07/16	88	70 - 130	98	70 - 130	100	%		
7566993	D4-1,2-Dichloroethane (sur.)	2014/07/16	93	70 - 130	94	70 - 130	89	%		
7568135	2,4,6-TRIBROMOPHENOL (sur.)	2014/07/21			85	10 - 123	81	%		
7568135	2-FLUOROPHENOL (sur.)	2014/07/21			37	21 - 100	33	%		
7568276	D10-ANTHRACENE (sur.)	2014/07/18	128	60 - 130	116	60 - 130	115	%		
7568276	D8-ACENAPHTHYLENE (sur.)	2014/07/18	122	50 - 130	106	50 - 130	107	%		
7568276	D8-NAPHTHALENE (sur.)	2014/07/18	121	50 - 130	106	50 - 130	106	%		
7568276	D9-Acridine	2014/07/18	109	50 - 130	94	50 - 130	92	%		
7568276	TERPHENYL-D14 (sur.)	2014/07/18	114	60 - 130	111	60 - 130	110	%		
7568291	O-TERPHENYL (sur.)	2014/07/18	104	50 - 130	107	50 - 130	113	%		
7566909	Benzene	2014/07/17	104	70 - 130	110	70 - 130	<0.40	ug/L		
7566909	Ethylbenzene	2014/07/17	104	70 - 130	107	70 - 130	<0.40	ug/L		
7566909	m & p-Xylene	2014/07/17	107	70 - 130	110	70 - 130	<0.40	ug/L		
7566909	o-Xylene	2014/07/17	101	70 - 130	104	70 - 130	<0.40	ug/L		
7566909	Styrene	2014/07/17	97	70 - 130	101	70 - 130	<0.40	ug/L		
7566909	Toluene	2014/07/17	110	70 - 130	112	70 - 130	<0.40	ug/L		
7566909	VH C6-C10	2014/07/17			93	70 - 130	<300	ug/L		
7566909	Xylenes (Total)	2014/07/17					<0.40	ug/L		
7566912	1,1,1,2-tetrachloroethane	2014/07/16	105	70 - 130	103	70 - 130	<0.50	ug/L		
7566912	1,1,1-trichloroethane	2014/07/16	107	70 - 130	104	70 - 130	<0.50	ug/L		
7566912	1,1,2,2-tetrachloroethane	2014/07/16	114	70 - 130	115	70 - 130	<0.50	ug/L		
7566912	1,1,2Trichloro-1,2,2Trifluoroethane	2014/07/16					<2.0	ug/L		
7566912	1,1,2-trichloroethane	2014/07/16	113	70 - 130	106	70 - 130	<0.50	ug/L		
7566912	1,1-dichloroethane	2014/07/16	104	70 - 130	103	70 - 130	<0.50	ug/L		
7566912	1,1-dichloroethene	2014/07/16	112	70 - 130	117	70 - 130	<0.50	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

OC Datab			Matrix Spike		Spiked Blank		Method Blank		RPD	
QC Batch Pa	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7566912 1,	1,2-dibromoethane	2014/07/16	109	70 - 130	105	70 - 130	<0.20	ug/L		
7566912 1,	1,2-dichlorobenzene	2014/07/16	120	70 - 130	115	70 - 130	<0.50	ug/L		
7566912 1,	1,2-dichloroethane	2014/07/16	111	70 - 130	105	70 - 130	<0.50	ug/L		
7566912 1,	1,2-dichloropropane	2014/07/16	110	70 - 130	106	70 - 130	<0.50	ug/L		
7566912 1,	1,3-Butadiene	2014/07/16					<5.0	ug/L		
7566912 1,	1,3-dichlorobenzene	2014/07/16	120	70 - 130	116	70 - 130	<0.50	ug/L		
7566912 1,	1,4-dichlorobenzene	2014/07/16	118	70 - 130	114	70 - 130	<0.50	ug/L		
7566912 B	Benzene	2014/07/16	106	70 - 130	102	70 - 130	<0.40	ug/L		
7566912 B	Bromobenzene	2014/07/16	114	70 - 130	112	70 - 130	<2.0	ug/L		
7566912 B	Bromodichloromethane	2014/07/16	106	70 - 130	99	70 - 130	<1.0	ug/L		
7566912 B	Bromoform	2014/07/16	105	70 - 130	104	70 - 130	<1.0	ug/L		
7566912 B	Bromomethane	2014/07/16	115	60 - 140	108	60 - 140	<1.0	ug/L		
7566912 C	Carbon tetrachloride	2014/07/16	110	70 - 130	102	70 - 130	<0.50	ug/L		
7566912 C	Chlorobenzene	2014/07/16	107	70 - 130	108	70 - 130	<0.50	ug/L		
7566912 C	Chlorodibromomethane	2014/07/16	102	70 - 130	102	70 - 130	<1.0	ug/L		
7566912 C	Chloroethane	2014/07/16	89	60 - 140	88	60 - 140	<1.0	ug/L		
7566912 C	Chloroform	2014/07/16	102	70 - 130	100	70 - 130	<1.0	ug/L		
7566912 C	Chloromethane	2014/07/16	90	60 - 140	88	60 - 140	<1.0	ug/L		
7566912 ci	cis-1,2-dichloroethene	2014/07/16	110	70 - 130	108	70 - 130	<1.0	ug/L		
7566912 ci	cis-1,3-dichloropropene	2014/07/16	106	70 - 130	98	70 - 130	<1.0	ug/L		
7566912 D	Dibromomethane	2014/07/16	106	70 - 130	103	70 - 130	<0.90	ug/L		
7566912 D	Dichlorodifluoromethane	2014/07/16	104	60 - 140	102	60 - 140	<2.0	ug/L		
7566912 D	Dichloromethane	2014/07/16	117	70 - 130	115	70 - 130	<2.0	ug/L		
7566912 Et	Ethylbenzene	2014/07/16	120	70 - 130	114	70 - 130	<0.40	ug/L		
7566912 m	m & p-Xylene	2014/07/16	119	70 - 130	118	70 - 130	<0.40	ug/L		
7566912 o	o-Xylene	2014/07/16	111	70 - 130	112	70 - 130	<0.40	ug/L		
7566912 St	Styrene	2014/07/16	112	70 - 130	109	70 - 130	<0.50	ug/L		
7566912 To	Tetrachloroethene	2014/07/16	110	70 - 130	107	70 - 130	<0.50	ug/L		
7566912 To	Toluene	2014/07/16	115	70 - 130	109	70 - 130	<0.40	ug/L		
7566912 tr	rans-1,2-dichloroethene	2014/07/16	106	70 - 130	101	70 - 130	<1.0	ug/L		
7566912 tr	rans-1,3-dichloropropene	2014/07/16	92	70 - 130	88	70 - 130	<1.0	ug/L		
7566912 Ti	Trichloroethene	2014/07/16	111	70 - 130	108	70 - 130	<0.50	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

			Matrix	Spike	Spiked	Blank	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery QC Limits		% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7566912	Trichlorofluoromethane	2014/07/16	120	60 - 140	134	60 - 140	<4.0	ug/L		
7566912	VH C6-C10	2014/07/16			101	70 - 130	<300	ug/L		
7566912	Vinyl chloride	2014/07/16	102	60 - 140	100	60 - 140	<0.50	ug/L		
7566912	Xylenes (Total)	2014/07/16					<0.40	ug/L		
7566993	2-Butanone (MEK)	2014/07/16	111	70 - 130	91	70 - 130	<10	ug/L		
7566993	4-Methyl-2-pentanone (MIBK)	2014/07/16	114	70 - 130	88	70 - 130	<10	ug/L		
7568135	2,3,4,5-tetrachlorophenol	2014/07/21			122	14 - 176	<0.10	ug/L		
7568135	2,3,4,6-tetrachlorophenol	2014/07/21			112	14 - 176	<0.10	ug/L		
7568135	2,3,4-trichlorophenol	2014/07/21			100	37 - 144	<0.10	ug/L		
7568135	2,3,5,6-tetrachlorophenol	2014/07/21			115	14 - 176	<0.10	ug/L		
7568135	2,3,5-trichlorophenol	2014/07/21			98	37 - 144	<0.10	ug/L		
7568135	2,3,6-Trichlorophenol	2014/07/21			96	37 - 144	<0.10	ug/L		
7568135	2,3-Dichlorophenol	2014/07/21			80	39 - 135	<0.10	ug/L		
7568135	2,4 + 2,5-Dichlorophenol	2014/07/21			85	39 - 135	<0.10	ug/L		
7568135	2,4,5-trichlorophenol	2014/07/21			100	37 - 144	<0.10	ug/L		
7568135	2,4,6-trichlorophenol	2014/07/21			93	37 - 144	<0.10	ug/L		
7568135	2,6-dichlorophenol	2014/07/21			84	39 - 135	<0.10	ug/L		
7568135	2-chlorophenol	2014/07/21			70	27 - 123	<0.10	ug/L		
7568135	3 & 4-chlorophenol	2014/07/21			84	27 - 123	<0.10	ug/L		
7568135	3,4,5-Trichlorophenol	2014/07/21			121	37 - 144	<0.10	ug/L		
7568135	3,4-Dichlorophenol	2014/07/21			101	39 - 135	<0.10	ug/L		
7568135	3,5-Dichlorophenol	2014/07/21			93	39 - 135	<0.10	ug/L		
7568135	Pentachlorophenol	2014/07/21			155	14 - 176	<0.10	ug/L		
7568276	2-Methylnaphthalene	2014/07/18	109	50 - 130	98	50 - 130	<0.10	ug/L		
7568276	Acenaphthene	2014/07/18	116	50 - 130	106	50 - 130	<0.050	ug/L		
7568276	Acenaphthylene	2014/07/18	110	50 - 130	100	50 - 130	<0.050	ug/L		
7568276	Acridine	2014/07/18	99	50 - 130	90	50 - 130	<0.050	ug/L		
7568276	Anthracene	2014/07/18	121	60 - 130	110	60 - 130	<0.010	ug/L		
7568276	Benzo(a)anthracene	2014/07/18	105	60 - 130	96	60 - 130	<0.010	ug/L		
7568276	Benzo(a)pyrene	2014/07/18	110	60 - 130	100	60 - 130	<0.0090	ug/L		
7568276	Benzo(b&j)fluoranthene	2014/07/18	104	60 - 130	97	60 - 130	<0.050	ug/L		
7568276	Benzo(g,h,i)perylene	2014/07/18	105	60 - 130	95	60 - 130	<0.050	ug/L		

QUALITY ASSURANCE REPORT(CONT'D)

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

			Matrix	Spike	Spiked	Blank	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7568276	Benzo(k)fluoranthene	2014/07/18	104	60 - 130	94	60 - 130	<0.050	ug/L		
7568276	Chrysene	2014/07/18	108	60 - 130	99	60 - 130	<0.050	ug/L		
7568276	Dibenz(a,h)anthracene	2014/07/18	104	60 - 130	95	60 - 130	<0.050	ug/L		
7568276	Fluoranthene	2014/07/18	113	60 - 130	103	60 - 130	<0.020	ug/L		
7568276	Fluorene	2014/07/18	110	50 - 130	100	50 - 130	<0.050	ug/L		
7568276	Indeno(1,2,3-cd)pyrene	2014/07/18	110	60 - 130	100	60 - 130	<0.050	ug/L		
7568276	Naphthalene	2014/07/18	105	50 - 130	94	50 - 130	<0.10	ug/L		
7568276	Phenanthrene	2014/07/18	111	60 - 130	102	60 - 130	<0.050	ug/L		
7568276	Pyrene	2014/07/18	114	60 - 130	104	60 - 130	<0.020	ug/L		
7568276	Quinoline	2014/07/18	107	50 - 130	114	50 - 130	<0.24	ug/L		
7568291	EPH (C10-C19)	2014/07/18	103	50 - 130	96	50 - 130	<0.20	mg/L		
7568291	EPH (C19-C32)	2014/07/18	98	50 - 130	98	50 - 130	<0.20	mg/L		
7569943	Dissolved Aluminum (Al)	2014/07/19	101	80 - 120	109	80 - 120	<3.0	ug/L	5.6	20
7569943	Dissolved Antimony (Sb)	2014/07/19	101	80 - 120	99	80 - 120	<0.50	ug/L	NC	20
7569943	Dissolved Arsenic (As)	2014/07/19	102	80 - 120	103	80 - 120	<0.10	ug/L	2.2	20
7569943	Dissolved Barium (Ba)	2014/07/19	NC	80 - 120	102	80 - 120	<1.0	ug/L	3.6	20
7569943	Dissolved Beryllium (Be)	2014/07/19	100	80 - 120	98	80 - 120	<0.10	ug/L	NC	20
7569943	Dissolved Bismuth (Bi)	2014/07/19	100	80 - 120	98	80 - 120	<1.0	ug/L	NC	20
7569943	Dissolved Boron (B)	2014/07/19					<50	ug/L	NC	20
7569943	Dissolved Cadmium (Cd)	2014/07/19	101	80 - 120	101	80 - 120	<0.010	ug/L	NC	20
7569943	Dissolved Chromium (Cr)	2014/07/19	102	80 - 120	102	80 - 120	<1.0	ug/L	NC	20
7569943	Dissolved Cobalt (Co)	2014/07/19	NC	80 - 120	102	80 - 120	<0.50	ug/L	1.4	20
7569943	Dissolved Copper (Cu)	2014/07/19	100	80 - 120	106	80 - 120	<0.20	ug/L	NC	20
7569943	Dissolved Iron (Fe)	2014/07/19	NC	80 - 120	103	80 - 120	<5.0	ug/L	1.9	20
7569943	Dissolved Lead (Pb)	2014/07/19	98	80 - 120	97	80 - 120	<0.20	ug/L	NC	20
7569943	Dissolved Lithium (Li)	2014/07/19	102	80 - 120	102	80 - 120	<5.0	ug/L	NC	20
7569943	Dissolved Manganese (Mn)	2014/07/19	NC	80 - 120	104	80 - 120	<1.0	ug/L	0.2	20
7569943	Dissolved Molybdenum (Mo)	2014/07/19	NC	80 - 120	99	80 - 120	<1.0	ug/L	NC	20
7569943	Dissolved Nickel (Ni)	2014/07/19	NC	80 - 120	103	80 - 120	<1.0	ug/L	0.3	20
7569943	Dissolved Selenium (Se)	2014/07/19	90	80 - 120	101	80 - 120	<0.10	ug/L	NC	20
7569943	Dissolved Silicon (Si)	2014/07/19					<100	ug/L	4.4	20
7569943	Dissolved Silver (Ag)	2014/07/19	103	80 - 120	97	80 - 120	<0.020	ug/L	NC	20

QUALITY ASSURANCE REPORT(CONT'D)

KEYSTONE ENVIRONMENTAL LTD

Client Project #: 12108-02
Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

Sampler Initials: BL

			Matrix Spike		Spiked	Blank	Method	Blank	RPD	
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	Units	Value (%)	QC Limits
7569943	Dissolved Strontium (Sr)	2014/07/19	NC	80 - 120	100	80 - 120	<1.0	ug/L	3.0	20
7569943	Dissolved Thallium (TI)	2014/07/19	101	80 - 120	98	80 - 120	<0.050	ug/L	NC	20
7569943	Dissolved Tin (Sn)	2014/07/19	98	80 - 120	99	80 - 120	<5.0	ug/L	NC	20
7569943	Dissolved Titanium (Ti)	2014/07/19	106	80 - 120	102	80 - 120	<5.0	ug/L	NC	20
7569943	Dissolved Uranium (U)	2014/07/19	107	80 - 120	99	80 - 120	<0.10	ug/L	NC	20
7569943	Dissolved Vanadium (V)	2014/07/19	106	80 - 120	100	80 - 120	<5.0	ug/L	NC	20
7569943	Dissolved Zinc (Zn)	2014/07/19	101	80 - 120	103	80 - 120	<5.0	ug/L	NC	20
7569943	Dissolved Zirconium (Zr)	2014/07/19					<0.50	ug/L	NC	20
7571873	Dissolved Mercury (Hg)	2014/07/21	100	80 - 120	105	80 - 120	<0.010	ug/L	NC	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spiked amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than 2x that of the native sample concentration).

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

Site Location: LE KUI; 456 PRIOR STREET VANCOUVER

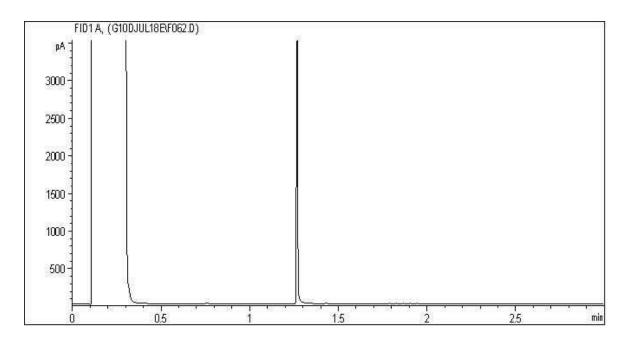
Sampler Initials: BL

VALIDATION SIGNATURE PAGE

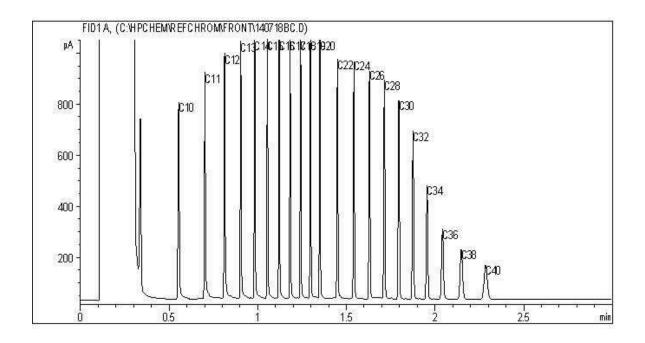
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Rob Reinert, Data Validation Coordinator

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.


Maxx	am	4606 Canada Way,	Burnaby, BC Canad	la V5G			4 7276 Toll Job#:		800 66 45°				2386					age:	1 _ of	RECOF	RD		8
	To: Require Report?		Company Na	ame:	Re	port 7	Го:						[F	PO #:				1		-			
Contact Name: Wree (e	McDonall/	Brita Zon	Contact Nan	ne:	_								- 6	Quotati	en #:					A			
Address: #320-4	400 Dominion S	reet	Address:		-								F	roject	0 :	121	105	2-0	2				
Burnab	, BC PO: V5G	4G3							PC:					roj. Na			Ku						
Phone / Fax#: Ph:(604)	430-0671 Fax: [60	4) 430-0672	Phone / Fax E-mail	#:	Phi			П	Fax				-	ocatio Sample		6 P	n/o hen	nst La	inu.	Van	(30,0	u,	
EGULATORY REQUIREME	NTS SERVICE REQ	JESTED:																					
CSR	L'Regular Tur	n Around Time	(TAT)							_													
CCME BC Water Quality Other DRINKING WATER	(5 days for RUSH (Pleater 1 Day Date Require	se contact the I	ab) 3 Day			V	втех)	ITEX)	s by GCMS	Swog	1	Z Z	Amrhonis	othypete	Alkelloniv	STED	Fecal		*				ı
Special Instructions:	Ship Sample Bottle	s (please speci		X		- EPHINEPH	4C (Fractions 1-4 Plus BTEX) 4C (Fractions 2-4)	TEX (Fraction 1 Plus BTEX)	by 4AAP	MOG	d Field Fillmod?	Fleed Accidition?	Nitrite	Fluoride S	Cooductivity		Total & E coll		issolu meru			uners	ON ON
Sample Identification			Date/Time Sampled	BTEXVP	4	ЬУН	COME-P1	OCME BT	쁑	тов	Dissohv	Motals	Nitrate	Chloride	Total Sus	900	Colling.	Asbestos	ŏ			# of conta	YES
1 MW14-1	KCO: 40	32 Water	July 16/14			×			X			X							×			G	
2 MW14-2	KC4033	1	1)	<	X						X							X			8	2002
3 MW14-3	kc403	1		7	<																	3	Source? holds?
4 MW 14-4	KL403			×		X			Ve.			×							X			8	er S
5 mw14-5	KC4031			>	(.x						×						-	×			8	Water house
6 mw14-6	KC463	1		+		X	++	+	×			X		7				_	×		_	6	ing
	KC4038					X	++	+	×		\dashv	x		+		+			X	++		5	Drinking multiple I
				+	+	X	+	+			-	-	1-1	+	+				x	++	_	6	m ≥
8 MW14-A	NC4051	- X	*	+	-	~	++	+	X	-	\dashv	X			PSIK 1973A			1		-	-	b	from a supply
9		-			-	-	-	+	-		-	10	1		y wy		d all b			-	+	-	
0				-	-	\vdash		+	-		_	×	W.C.	W	LIVATO	Wany.	100	3			+-	-	
1					_				_				TOTAL	nio A	1000	MINIST.	dintill	ă II			\perp	_	Samples Does sou
2												B45	59953										Sal
		me:	Received by:		D	ate (Y	//MM/DD)		Time			Tim		district man	OCCUPATION OF THE PARTY OF	erature d	and services of the		(C)	Custody	Seal Int	act on	Cooler?
		54 fileres	6 BAN	ZoN	10	35.60	7 /15	ľ	5:5						221	2210	241	T	3	Yés		No	
IS THE RESPONSIBILITY OF THE RELINQUI C-1927-Kayatone	SHER TO ENSURE THE ACCUR.	ACY OF THE CHAIN OF (-		ODY MAY REE on o/e Maxism	A CHANGE	NALYTIC	AL TAT	DELAYS				19,	20 10	22	2/ 0		- Wi	hite: Mexxan	Yellow: 0	Dient

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

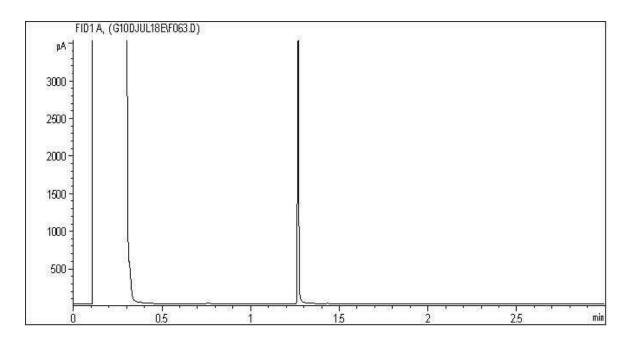

Site Reference: LE KUI; 456 PRIOR STREET VANCOUVER

Client ID: MW14-1

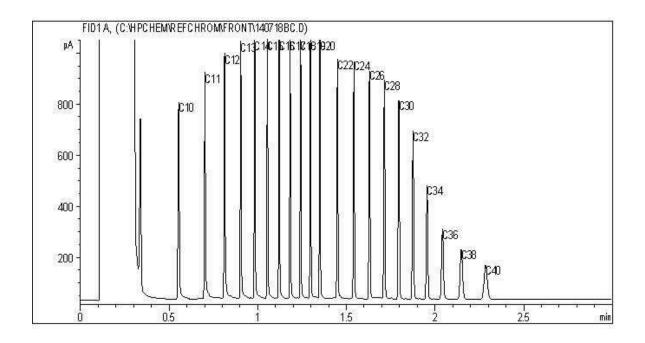
Extrac. Pet HC when LEPH/HEPH required Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES


Gasoline: C4 - C12 Diesel: C8 - C22
Varsol: C8 - C12 Lubricating Oils: C20 - C40

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

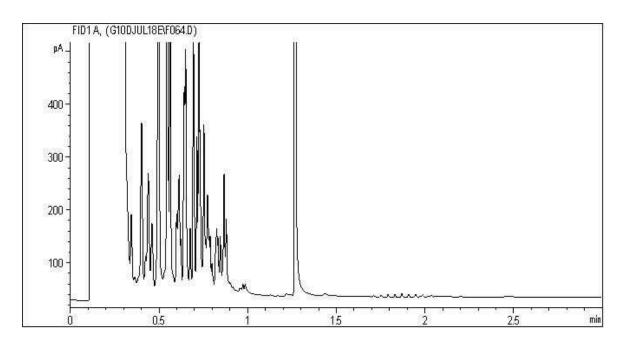

Site Reference: LE KUI; 456 PRIOR STREET VANCOUVER

Client ID: MW14-2

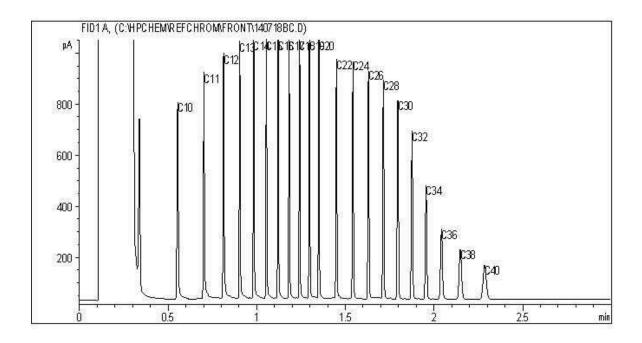
Extrac. Pet HC when LEPH/HEPH required Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES


Gasoline: C4 - C12 Diesel: C8 - C22
Varsol: C8 - C12 Lubricating Oils: C20 - C40

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

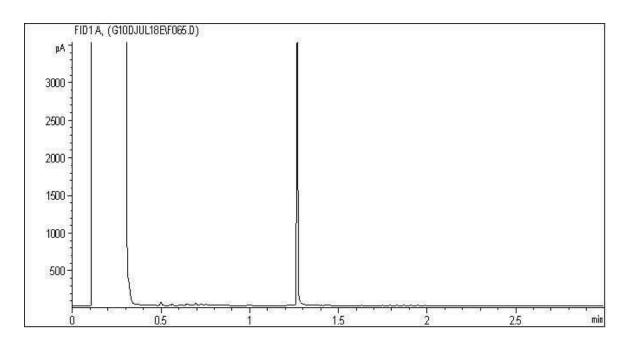

Site Reference: LE KUI; 456 PRIOR STREET VANCOUVER

Client ID: MW14-4

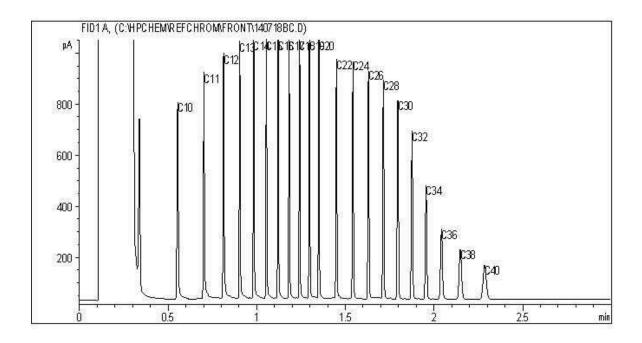
Extrac. Pet HC when LEPH/HEPH required Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES


Gasoline: C4 - C12 Diesel: C8 - C22
Varsol: C8 - C12 Lubricating Oils: C20 - C40

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

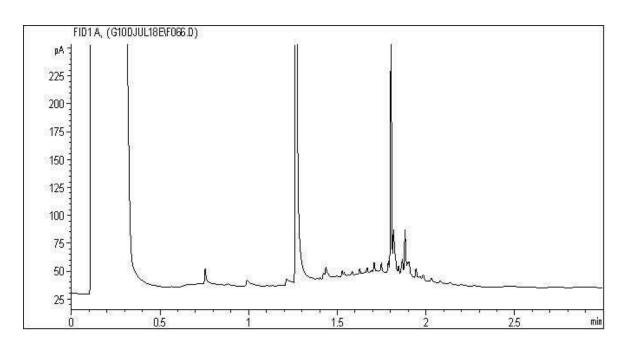

Site Reference: LE KUI; 456 PRIOR STREET VANCOUVER

Client ID: MW14-5

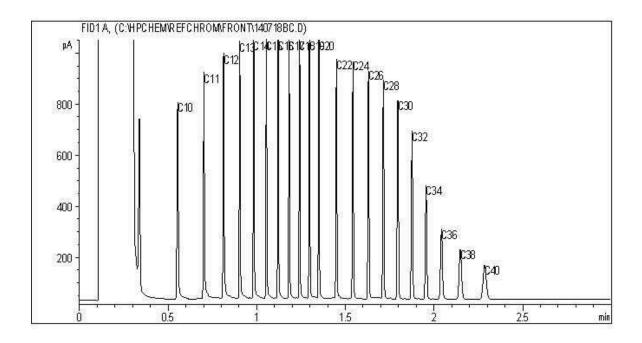
Extrac. Pet HC when LEPH/HEPH required Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES


Gasoline: C4 - C12 Diesel: C8 - C22
Varsol: C8 - C12 Lubricating Oils: C20 - C40

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

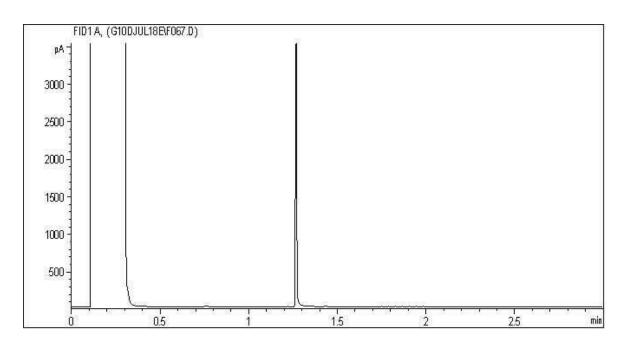

Site Reference: LE KUI; 456 PRIOR STREET VANCOUVER

Client ID: MW14-6

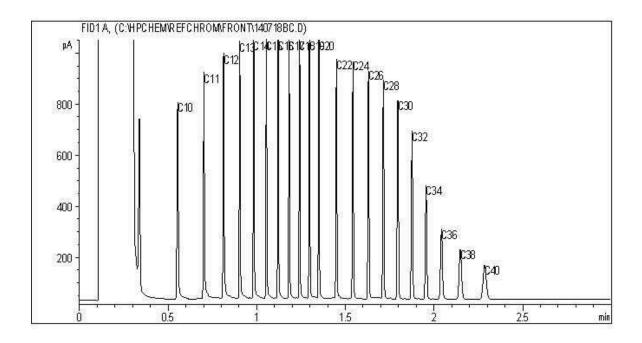
Extrac. Pet HC when LEPH/HEPH required Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES


Gasoline: C4 - C12 Diesel: C8 - C22
Varsol: C8 - C12 Lubricating Oils: C20 - C40

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02

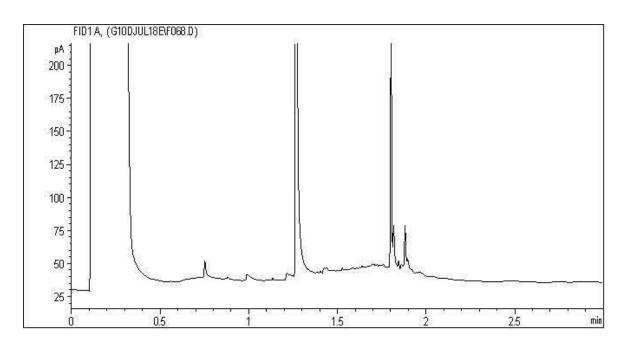

Site Reference: LE KUI; 456 PRIOR STREET VANCOUVER

Client ID: MW14-7

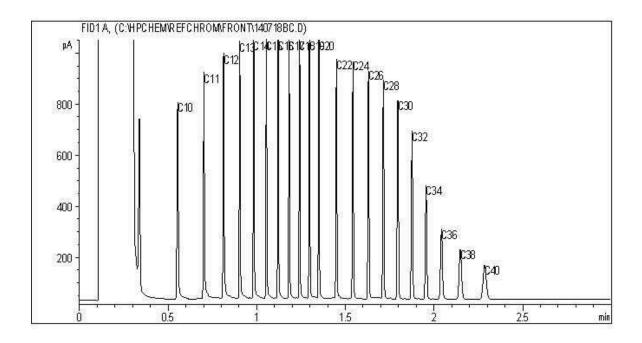
Extrac. Pet HC when LEPH/HEPH required Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES


Gasoline: C4 - C12 Diesel: C8 - C22
Varsol: C8 - C12 Lubricating Oils: C20 - C40

KEYSTONE ENVIRONMENTAL LTD Client Project #: 12108-02


Site Reference: LE KUI; 456 PRIOR STREET VANCOUVER

Client ID: MW14-A

Extrac. Pet HC when LEPH/HEPH required Chromatogram

Carbon Range Distribution - Reference Chromatogram

TYPICAL PRODUCT CARBON NUMBER RANGES

Gasoline: C4 - C12 Diesel: C8 - C22
Varsol: C8 - C12 Lubricating Oils: C20 - C40

KEYSTONE ENVIRONMENTAL LTD. GENERAL TERMS AND CONDITIONS FOR SERVICES

KEYSTONE ENVIRONMENTAL LTD. GENERAL TERMS AND CONDITIONS FOR SERVICES

The terms and conditions set forth below govern all work or services requested by CLIENT as described and set forth in the Proposal and/or Work Plan of Keystone Environmental Ltd. ("Keystone Environmental "), any Purchase Order issued by CLIENT or Agreement between Keystone Environmental and CLIENT. The provisions of said Proposal or Agreement govern the scope of services to be performed, including the time schedule, compensation, and any other special terms. The terms and conditions contained herein shall otherwise apply expressly stated to the contract including any terms in addition to or inconsistent with said Proposal or Agreement.

1. COMPENSATION

The fees for services provided by Keystone Environmental consists of: (1) an hourly billing rate for any staff member actively working on a project, except for lump-sum or percent of construction fee basis projects; (2) reimbursement of direct expenses; (3) reimbursement of subcontractor's and other special costs; and (4) use and rental charges for equipment. Invoices covering these charges and expenses will be submitted for payment on a monthly basis, unless other arrangements have been agreed upon in writing.

All time, including traveling hours, spent on the project by Keystone Environmental personnel will be invoiced. Overtime incurred by and paid to personnel may be invoiced at a rate of 1.2 times the hours worked, if so stipulated in the proposal and/or work plan. Unless a lump-sum bid is submitted or percent of construction fee basis used, any cost estimate presented in the proposal and/or work plan is for budgetary purposes only and is not a fixed lump-sum bid. If it becomes apparent that the budgetary estimate is not sufficient to complete the project in a satisfactory manner, the client will be advised before the budgetary estimate is exceeded.

REIMBURSABLE EXPENSES

- (a) The following expenses will be invoiced at cost plus 15% to cover overhead:
 - (i) Travel expenses including airfare, rental vehicles, personal vehicles at \$0.54/km for less than 5,000 kms and \$0.48/km for 5,000 kms and over, subsistence and lodging.
 - (ii) Shipping/storage charges and costs for expendable sampling and field supplies.
 - (iii) Communications costs, including telephone and mailing costs including courier services.
 - (iv) All project-related purchases including subcontractor costs, laboratory charges, material fees, duties, deposits, equipment purchases, third party equipment rentals and other outside costs incurred specifically for the project.
- (b) The following expenses will be invoiced at the rates which follow:
 - (i) Field and reproduction equipment in accordance with our Equipment Rate Schedule.
 - (i) Field and reproduction equipmen(ii) Photocopying at \$ 0.15 per copy.
 - (iii) Engineering and specialty software services will be invoiced at \$20.00/connect hour as stipulated in the proposal and/or work plan

GST/HST paid on expenses and disbursements by Keystone Environmental is not included in invoiced costs. GST/HST will be added to all invoices other than invoices sent to GST/HST exempt Clients

Payment shall be provided by money transfer, cheque, or, if with prior approval by Keystone Environmental, Master Card or Visa. A surcharge of 3% may be added to payments by MasterCard or Visa if the payment amount exceeds \$3,000.00. Fees shall be paid in advance if stipulated in the proposal and/or work plan. Where payment in advance is not stipulated in the proposal and/or work plan, progress invoices will be issued monthly and are to be paid within 30 days of the invoice date. Subcontractor billings are payable upon presentation. A finance charge of 1.5% per month (19.6% per annum) may be charged on past due accounts. Payment of Keystone Environmental invoices shall be in Canadian currency.

CLIENT agrees to compensate Keystone Environmental in accordance with the total fee as stipulated in Keystone Environmental's proposal and/or work plan.

Keystone Environmental may, at its sole discretion, withhold work products at any time that accounts are past due and until accounts are paid in full. Keystone Environmental may also, at its sole discretion, stop work at any time accounts are past due.

In the event that Keystone Environmental shall take collection or legal action for the recovery of the payment of outstanding accounts, Keystone Environmental shall be entitled to recover all collection and legal fees and expenses incurred by it with respect to such action.

2. INDEPENDENT CONTRACTOR

Keystone Environmental shall be an independent contractor and shall be fully independent in performing the services of work and shall not act or hold themselves out as an agent, servant or employee of CLIENT.

3. KEYSTONE ENVIRONMENTAL'S LIMITED WARRANTY

The sole and exclusive warranty which Keystone Environmental makes with respect to the services to be provided in the performance of the work is that they shall be performed in accordance with generally accepted professional practices.

In the event Keystone Environmental's performance of work, or any portion thereof, fails to conform to the above stated limited warranty, Keystone Environmental shall, at its discretion and its expense, proceed expeditiously to repertory the nonconforming, or upon the mutual agreement of the parties, refund the amount of compensation paid to Keystone Environmental for such nonconforming work. In no event shall Keystone Environmental be required to bear the cost of gaining access in order to perform its warranty obligations.

4. CLIENT WARRANTY

CLIENT warrants that: it will provide to Keystone Environmental all available information regarding the site, including underground structures and utilities, facilities, buildings, and land involved with the work and that such information shall be true and correct and that it has title to or will provide right of entry or access to all property necessary to perform the work. The Client shall provide all licenses and permits required for the work, unless otherwise stated in the proposal and/or work plan,

5. <u>INDEMNITY</u>

- a. Subject to the limitations of Section 7 below, Keystone Environmental agrees to indemnify, defend and hold harmless CLIENT (including its officers, directors, employees and agents) from and against any and all losses, damages, liabilities, claims, suits, and the costs and expenses incident thereto (including reasonable legal fees and reasonable costs of investigation) which any or all of them may hereafter incur, become responsible for or pay out as a result of death or bodily injuries to any person, destruction or damage to any property, private or public, contamination or adverse effects on the environment or any violation or alleged violation of governmental laws, regulations, or orders, to the extent caused by or arising out of: (i) Keystone Environmental's errors or omissions or (ii) negligence on the part of Keystone Environmental in performing services hereunder.
- b. CLIENT agrees to indemnify and hold harmless Keystone Environmental (including its officers, directors, employees and agents) from and against any and all losses, damages, liabilities, claims, suits and the costs and expenses incident thereto (including legal fees and reasonable costs of investigation) which any or all of them may hereafter incur, become responsible for or pay out as a result of death or bodily injuries to any person, destruction or damage to any property, private or public, contamination or adverse effects on the environment or any violation or alleged violation of governmental laws, regulations, or orders, caused by, or arising out of in whole or in part: (i) any negligence or willful misconduct of CLIENT, (ii) any breach of CLIENT of any warranties or other provisions hereunder, (iii) any condition including, but not limited to, contamination existing at the site, or (iv) contamination of other property arising or alleged to arise from or be related to the site provided, however, that such indemnification shall not apply to the extent any losses, damages, liabilities or expenses result from or arise out of: (i) any negligence or willful misconduct of Keystone Environmental; or(ii) any breach of Keystone Environmental of any warranties hereunder.

6. <u>LIMITATION OF LIABILITY</u>

Keystone Environmental's total liability, whether arising from or based upon breach of warranty, breach of contract, tort, including Keystone Environmental's negligence, strict liability, indemnity or any other cause of basis whatsoever, is expressly limited to the limits of Keystone Environmental's insurance coverage. This provision limiting Keystone Environmental's liability shall survive the termination, cancellation or expiration of any contract resulting from this Proposal and the completion of services thereunder. After three (3) years of completion of Keystone Environmental's services, any legal costs arising to defend third party claims made against Keystone Environmental in connection with the project defined in the Proposal or Agreement will be paid in full by the CLIENT.

7. <u>INSURANCE</u>

Keystone Environmental, during performance of this Agreement, will at its own expense carry Worker's Compensation Insurance within limits required by law; Comprehensive General Liability Insurance for bodily injury and for property damage; Professional Liability Insurance for errors omissions and negligence; and Comprehensive Automobile Liability Insurance for bodily injury and property damage. At CLIENT'S request, Keystone Environmental shall provide a Certificate of Insurance demonstrating Keystone Environmental's compliance with this section. Such Certificate of Insurance shall provide that said insurance shall not be cancelled or materially altered until at least ten (10) days after written notice to CLIENT.

8. CONFIDENTIALITY

Each party shall retain as confidential all information and data furnished to it by the other party which relate to the other party's technologies, formulae, procedures, processes, methods, trade secrets, ideas, improvements, inventions and/or computer programs, which are designated in writing by such other party as confidential at the time of transmission and are obtained or acquired by the receiving party in connection with work or services performed subject to this Proposal or Agreement, and shall not disclose such information to any third party.

However, nothing herein is meant to prevent nor shall it be interpreted as preventing either Keystone Environmental or CLIENT from disclosing and/or using said information or data; (i) when the information or data is actually known to the receiving party before being obtained or derived from the transmitting party; or (ii) when the information or data is generally available to the public without the receiving party's fault; or (iii) where the information or data is obtained or acquired in good faith at any time by the receiving party from a third party who has the right to disclose such information or data; or (iv) where a written release is obtained by the receiving party from the transmitting party; or (v) as required by law.

9. PROTECTION OF INFORMATION

Keystone Environmental specifically disclaims any warranties expressed or implied and does not make any representations regarding whether any information associated with conducting the work, including the report, can be protected from disclosure in responses to a request by a federal, provincial or local government agency, or in response to discovery or other legal process during the course of any litigation involving Keystone Environmental or CLIENT. Should Keystone Environmental receive such request from a third party, it will immediately advise CLIENT.

10. FORCE MAJEURE

Neither party shall be responsible or liable to the other for default or delay in the performance of any of its obligations hereunder (other than the payment of money for services already rendered) caused in whole or in part by strikes or other labour difficulties or disputes; governmental orders or regulations; war, riot, fire, explosion; acts of God; acts of omissions of the other party; any other like causes; or any other unlike causes which are beyond the reasonable control of the respective party.

In the event of delay in performance due to any such cause, the time for completion will be extended by a period of time reasonably necessary to overcome the effect of the delay. The party so prevented from complying shall within a reasonable time of its knowledge of the disability advise the other party of the effective cause, the performance suspended or affected and the anticipated length of time during which performance will be prevented or delayed and shall make all reasonable efforts to remove such disability as soon as possible, except for labour disputes, which shall be solely within said party's discretion. The party prevented from complying shall advise the other party when the cause of the delay or default has ended, the number of days which will be reasonably required to compensate for the period of suspension and the date when performance will be resumed. Any additional costs or expense accruing or arising from the delaying event shall be solely for the account of the CLIENT.

11. NOTICE

Any notice, communication, or statement required or permitted to be given hereunder shall be in writing and deemed to have been sufficiently given when delivered in person or sent by facsimile, wire, or certified mail, return receipt requested, postage prepaid, to the address of the party set forth below, or to such address for either party as the party may be written notice designate.

12. ASSIGNMENT/SUBCONTRACT

Neither party hereto shall assign this Agreement or any part thereof nor any interest therein without the prior written approval of the other party hereto except as herein otherwise provided. Keystone Environmental shall not subcontract the performance of any work hereunder without the written approval of CLIENT. Subject to the foregoing limitation, the Agreement shall inure to the benefit of and be binding upon the successors and permitted assigns of the parties hereto.

13. ESTIMATES

To the extent the work requires Keystone Environmental to prepare opinions of probable cost, for example, opinions of probable cost for the cost of construction, such opinions shall be prepared in accordance with generally accepted engineering practice and procedure. However, Keystone Environmental has no control over construction costs, competitive bidding and market conditions, costs of financing, acquisition of land or rights-of-way and Keystone Environmental does not guarantee the accuracy of such opinion of probable cost as compared to actual costs or contractor's bid.

14. DELAYED AGREEMENTS AND OBLIGATIONS

The performance by Keystone Environmental of its obligations under this Agreement depends upon the CLIENT performing its obligations in a timely manner and cooperating with Keystone Environmental to the extent reasonably required for completion of the Work. Delays by CLIENT in providing information or approvals or performing its obligations set forth in this Agreement may result in an appropriate adjustment of contract price and schedule.

15. CONSTRUCTION PHASE

To the extent the work is related to or shall be followed by construction work not performed by Keystone Environmental, Keystone Environmental shall not be responsible during the construction phase for the construction means, methods, techniques, sequences or procedures of construction contractors, or the safety precautions and programs incident thereto, and shall not be responsible for the construction contractor's failure to perform the work in accordance with the contract documents. Keystone Environmental will not direct, supervise or control the work of the CLIENT'S contractors or the CLIENT'S subcontractors.

16. DOCUMENTATION, RECORDS, AUDIT

Keystone Environmental when requested by CLIENT, shall provide CLIENT with copies of all documents relating to the service(s) of work performed. Keystone Environmental shall retain true and correct records in connection with each service and/or work performed and all transactions related thereto and shall retain all such records for twelve (12) months after the end of the calendar year in which the last service pursuant to this Agreement was performed. CLIENT, at its expense and upon reasonable notice, may from time to time during the term of this Agreement, and at any time after the date the service(s) were performed up to twelve (12) months after the end of the calendar year in which the last service(s) were performed, audit all records of Keystone Environmental in connection with all costs and expenses which it was invoiced.

17. REPORTS, DOCUMENTS AND INFORMATION

All field data, field notes, laboratory test data, calculations, estimates and other documents prepared by Keystone Environmental in performance of the work shall remain the property of Keystone Environmental. If required as part of the work, Keystone Environmental shall prepare a written report addressing the items in the work plan including the test results. Such report shall be the property of CLIENT, Keystone Environmental shall be entitled to retain one hard copy and electronic copy of such report for its internal use and reference.

Reports will be delivered to the client in electronic (PDF) format.

All drawings and documents produced under the terms of this Agreement are the property of Keystone Environmental, and cannot be used for any reason other than to bid and construct the project as described in the Proposal or Agreement.

18. LIMITED USE OF REPORT

Any report prepared as part of the work will be prepared solely for the internal use of CLIENT. Unless otherwise agreed by Keystone Environmental and CLIENT, parties agree that third parties are not to rely upon the report.

19. SAMPLE MANAGEMENT

Ownership of all samples obtained by Keystone Environmental from the project site is maintained by the CLIENT. Keystone Environmental or its laboratory sub-contractor will store such samples in a professional manner in a secure area for the period of time necessary to complete the project. Upon completion of the project, Keystone Environmental disposes of the samples in a lawful manner.

20. ACKNOWLEDGMENT AND RECOGNITION OF RISK

CLIENT recognizes and accepts the work to be undertaken by Keystone Environmental may involve unknown undersurface conditions and hazards. CLIENT further recognizes that environmental, geologic, hydrological, and geotechnical conditions can and may vary from those encountered by Keystone Environmental at the times and locations where it obtained data and information and that limitations on available data may result in some uncertainty with respect to the interpretation of these conditions. CLIENT recognizes that the performance of services hereunder or the implementation of recommendations made by Keystone Environmental in completing the work required may alter the existing site conditions and affect the environment in the site area.

Unknown undersurface conditions, including underground utility services, tanks, pipes, cables and other works (Underground Works) may be present at the site. Keystone Environmental will conduct utility locates to obtain available information regarding the location of Underground Works in accordance with industry practice. Utility locates are not a guarantee of the location of, or existence of, Underground Works and as a result damage to Underground Works may occur. Keystone Environmental relies on utility locates and Client provided "as-built" and record drawings to determine the location and existence of Underground

Works. CLIENT recognizes that the use of utility locates is not a guarantee or warranty that Underground Works may not be damaged and acknowledges that Keystone Environmental is not responsible for any damage caused to Underground Works or the repair of such damage or any resulting or related damage and any costs related to such damage.

21. <u>DISPOSAL OF CONTAMINATED MATERIAL</u>

It is understood and agreed that Keystone Environmental is not, and has no responsibility as, a generator, operator or storer of pre-existing hazardous substances or wastes found or identified at work sites. Keystone Environmental shall not directly or indirectly assume title to such hazardous or toxic substances and shall not be liable to third parties.

CLIENT will indemnify and hold harmless Keystone Environmental from and against all incurred losses, damages, costs and expenses, including but not limited to attorneys' fees, arising or resulting from actions brought by third parties alleging or identifying Keystone Environmental as a generator, operator, storer or owner of pre-existing hazardous substances or wastes found or identified at work sites.

22. SUSPENSION OR TERMINATION

In the event the work is terminated or suspended by CLIENT prior to the completion of the services contemplated hereunder, Keystone Environmental shall be paid for: (i) the services rendered to the date of termination or suspension, (ii) the demobilization costs, and (iii) the costs incurred with respect to non-cancelable commitments.

23. GOVERNING LAW

This Agreement shall be governed by and interpreted pursuant to the laws of the Province of British Columbia.

24. <u>HEADINGS AND SEVERABILITY</u>

Any heading proceeding the text of sections hereof is inserted solely for convenience or reference and shall not constitute a part of the Agreement and shall not affect the meanings, context, effect or construction of the Agreement. Every part, term or provision of this Agreement is severable from others. Notwithstanding any possible future finding by duly constituted authority that a particular part, term or provision is invalid, void or unenforceable, this Agreement has been made with the clear intention that the validity and enforceability of the remaining parts, terms and provision shall not be affected thereby.

25. ENTIRE AGREEMENT

The terms and conditions set forth herein constitute the entire Agreement and understanding or the parties relating to the provision of work or services by Keystone Environmental to CLIENT, and merges and supersedes all prior agreements, commitments, representation, writings, and discussions between them and shall be incorporated in all work orders, purchase orders and authorization unless otherwise so stated therein. The terms and conditions may be amended only by written instrument signed by both parties.

1. Site Information:

UNDERGROUND STORAGE TANK REMOVAL/DECOMMISSIONING REPORT

This report must be completed and submitted to the City of Vancouver (Environmental Contamination Team) after completion of underground storage tank (UST) removal projects.

	Owner's Nar	ne: <u>456 Prior St</u>	rael Holdi	ngs Ltd.			6 <u>66</u>	
	Site Address	;456 Prior Str	eet, Vanc	ouver, BC				509
2.	Excavation A scaled (ab location, ex summary.	out 1:200) plan	i includi tion, so	ng (at mi il sample	n\mum locati	n): north on, and	narrow, nearby soil sample and	buildings, tank lytical results
3.	Site Photos	(electronic on	ly) Atta	ched:				
	The photos	must include th	ie tank-l	hold exca	vation	and the	e removed tank.	
4.		nation: oved from tank iciated (e.g., fe		면 s, venting	ı) p ipin	ig remái	ved? Y⊠	i N 🗆
Ta Control of the Con	nk Summary	Table:	Perio	ration(s)	vi. phy da (e.g	ther sible ysical mage , pipe nage)	Product in tank	Date tank removed from service (YYYY/MM/OD)
Pe	rmit #	Capacity (L)	Yes	No	Yes	No		
E1	411932	13,600 L	∴ N	la .	31	Nn	approx 520 L of gas and water	2015/02/03
	Name/addr ABC Recycl Tank dispos Liquid Was Liquid/slud Receiver na	ge disposal (e. ç ıme/address:	piping (Avenue, l ceipts a (,, type, Suma:	disposal/i Bumaby, 84 Ltached: /volume/ s Bioremedi	Y (class):	J 	iver: water and gasolina. 23 Byrna Road, Run	
	Disposal da	te (YYYY/MM/D	(D):2	2015/02/03		_		

hst	REMOVAL - FINAL COMPLETIONS LOSORE REPORT APPRENS 456 Prior Street
	Liquid Waste Disposal Receipt/Mamifest attached: Y ■ N/A □
7.	Soil Disposal (if applicable):
	Soil volume (m²) disposed:
	Soil disposal carrier: J.S Nijar Trucking Ltd.
	Sof. receiver information: Receiver/company name: <u>Sumas Bioramediation Facility</u>
	Receiver's address:4823 Byrre Road, Burnaby, BC
	Soil relocation agreement required: Y 🗂 N 🖼
	Disposal date: YY/MM/DD 2015/02/03
	Soil disposal receipt/manifest attached: Y ☑ N □
8.	Field Observations
	Field-screening (e.g., soil vapour, visual observations, staining) findings summary:
	Mild sydrocarbon-like odour observed on southern wall of excavebon
	Was product or contamination suspected of migrating into preferential pathways (e.g., perimeter drains), or beneath buildings? Y□N□
	Groundwater Observations:
	Was water present in the excavation? Y ☑ N □
	Was there petroleum hydrocarbon sheen on excavation water? Y 図 N □
	(Comments):slight hydrocarbon-like shoon on groundwater
9.	Confirmatory Soil Sampling
	Total Number of discrete in-situ soil samples (minimum five: one from each sidewall and the base) analyzed: $\frac{5}{100}$
	Sampler's name and company: Brian Lennan. Keystone Environmental Ltd
	Sample chain of custody and laboratory certificate of analysis attached? Y
	CALA analytical laboratory name:
	Laboratory address: 4606 Canada Way, Burnaby, BC

Analysis/PCOCs (e.g., LEPH/HEPH for heating oil): <u>LEPH/HEPH/PAH/BTEX/VPI/LEAD</u>

10. Ministry	of	Environment	Forms:
--------------	----	-------------	--------

11, Conclusion Summary Table

Address	Contractor/ Consultant	Tank Details (k, condition)	Léguid Wester Disposal Octails	Soil Receiver and m ³ Disposed	Confirmatory Samples Meet Standards (Y/N, PCOCs)	Estimated Volume Residuat Contaminatio n (m ¹ , N/A)	Offsite Migration (Y/M)	MoE Forms Submitted (i.e., NIR, NOM, N/A)
455 Prior Streat	Koysione Environmental Ltd	13,000 L Good	520 L Water and gas	Sumas 30 m3	No. honzere exceeds IL al 2 walls		Yes	N.R NOVI

12.	Name and	License of	Individual/Firm	Who Completed	this Report:
-----	----------	------------	-----------------	---------------	--------------

Name (company and individual):	Nicole MacDonald, P Ag.
Business license number:	130-831
Date of tank removal (MM/DD/YV	γγγ ₁ ; 02/03/15

13. Conclusion Statement:

Please select the appropriate checkmark that accurately reflects site conditions. "I confirm all information contained in this report is true and accurate. Based on this information, residual soils are less than \square , / (or) exceed \square , the applicable (select one; residential \square / commercial \square / industrial \square) standards. Contamination is \square / (or) is not \square /, suspected or confirmed to have migrated offsite."

di belainement			_
Memen	-		
	12		
2103			
ola MacDa	2002	Oano	1
use durith	et describ	1200 SC	1
THE AMILIA	Scoon		
	2106 2106	2106	2106 2106 1000 200 130 Onal

April 15, 2015	
Yeste.	

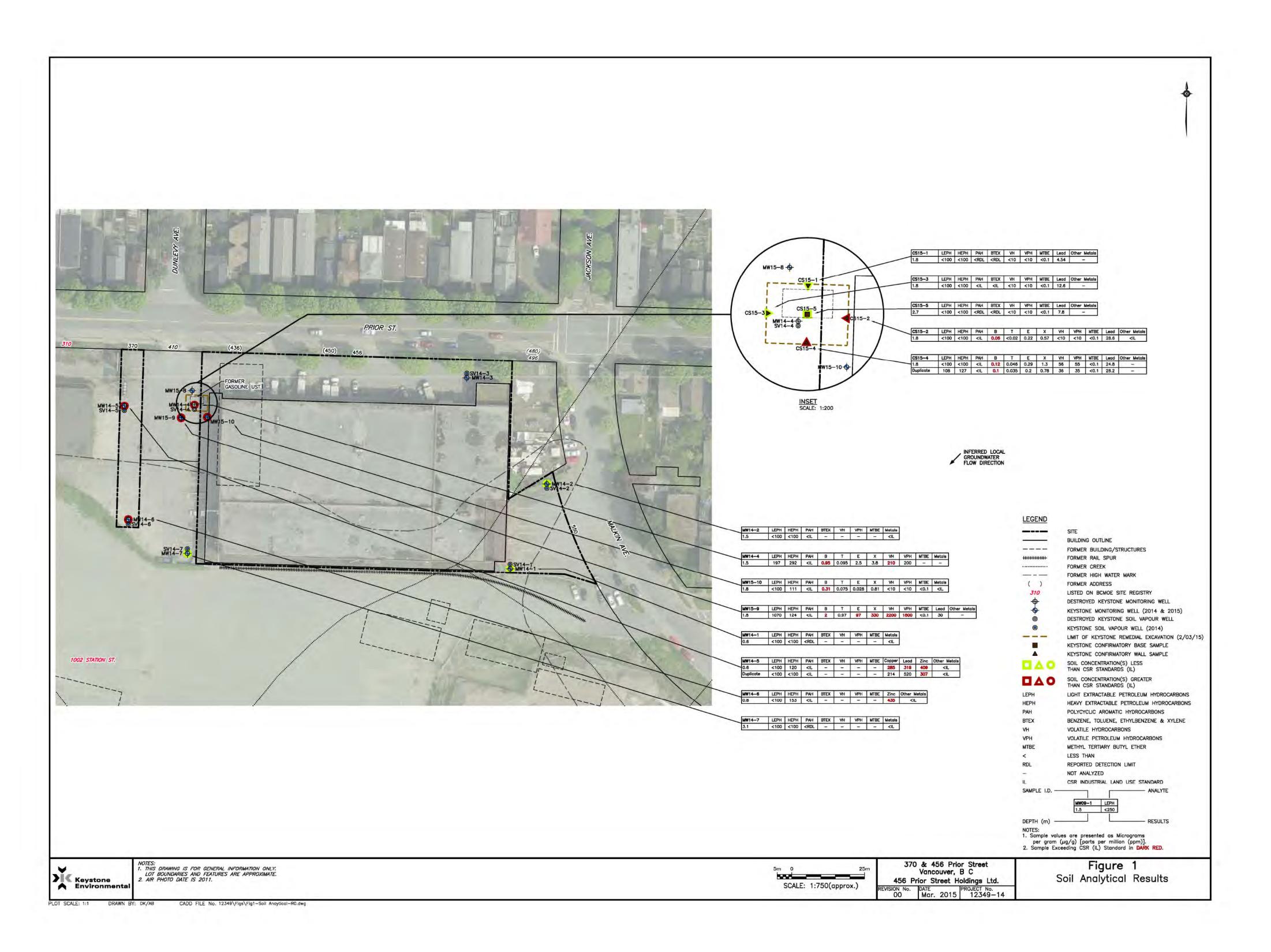
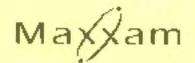



Photo 1 - Excavation after underground fuel storage tank removed.

Photo 2 - Fuel storage tank after removal from ground. 5.3 m long by 1.5 m diameter

2979 (Street Way Printery, Mr. Conerts Politick Printers are 1015 flux files in 800 656 668 603 (604 1017) 886

Maxim Joba

CHAIN OF CUSTODY RECORD

Firge . of .

K 016310

	Invoice To: La-	or beauty des	- dat				Rep	nort	To:																					
Company Name:	Kerstoen Envi			Саппрыту Л	int he											I	es e													
Contact Name:	Nicola Musik			Contact Na													Currie	ion *												
Address:	#320-4400 D		t	Address.			_									_ *	Project	-	12	149	7-1	4.								
	Burnaby, SC	.v. V56 46	3									Hr.				_ 1			Ger											
Phone - Faxt:	un (604) 430-0			Phone Fa	n-l		Pi					1.78										Str		1100	164	-	81			
F-mail				Firmed															1											
REGULATORY R	EQUIREMENTS SE	RVICE REQUES	TED																											
LCSH	12	†Brigi lac 3.im Ar	o.ing lime	1141.																										
COME		(6 Jays for mass	Cheats;											1	ANAI	LYS	IŞ A	EQL	EST	ED										
EC Water Qu	ality	HLGH (Please)	consor the	lan)																									-	
Omer		1 Day	2 Day	3 Day								CCAR	20.00	4 2	2	9.00			4		1								- 11	
DHORRING W		Co → Required							-		×	3	2	LIL		heny	7	2	4						- 1				- 8	
Special Mistrus	:enoid			Annual I					- Lin option		MILLIAMETER	2		> >		1	.=													
Reluth Cooler	Ship Sa	imple Bottes (p	lease spec	any)	4910		7	X		5	3	3		9	7		Lil	STATE .												
								+	(3	-		500	1	1 1	i i	-	2	100		4		1						9	2 2
								4	8	7	4	-9		2	3 1	2	3	2	1		4		100					6 10		
					E			\mathbb{Z}'	12	1,5		1 5		7 ,	\$			8	3] 3)					£ 1		
		Lah	Sample:	Date-Time	an/x	of Paulini		7.	H SMO		5 5	1		Mental A	-	spire	40.04	8			in the	87						RENETION	=	0.00
Sample	Identification	Mennhagian	Type	Sampled	E	J.	五	17.0	9	8	7 5	Phys	日	4."	-	NEW	3	Total	E	99	000	4						2	in or	¥ E8
1 6515	-1(1.18)		246	Fenselle	4																		V							
2 6515	2(118)		1		V			W.															6						6	. a.
3 2818	3/18)				-5		1	1															4.5				1			릥
4 14 5	4(1.81				10			1										-	10.				4				1	2	1	- £
5	5 (2,7)				N.			4															10							臣
8 6315	-1		V		14			4															1,4				7	24.		4
1																													ě	1
2																													Common and Principle Common	Does source supply multiple households?
ē																													I.	3
10																														ğ
11																							2						1	4 4
12																													1	å
							-				-		-		7		-					caby		Childy	_					
'Relinquishe	The state of the s	Contract Con		Received by:				_	CY-MAP			time		9	Trms Sansib			Tem	perati	(in or	n (Rec	oelpr -	COL	0	netro	ly Sea	al Int	act o	m Ca	der?
Bria lex	15/2	118 2 1	AN VIV	TO HAY	Y	-	2	15	102	16		15			-	3				:1,	11	17				_			100	-
											1					1		- 3			1	14			Yes				No	
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 cc 3 c atr c	a remarks.	0.13 cm of 60 to		F 1 15	1 45	-	- 114	lat s	. 11 1	1	1111	195								_				400	Ifacle	10,10	n. 12 mi	

MOVEMENT DOCUMENT / MANIFEST DOCUMENT DE MOUVEMENT / MANIFESTE

yet beginned melode the environment legislation

£6 € 14-1508 341

Mayanger (e.g. attack) Marconet Replacement from

BL04929-9

De gage major de un posições propries más propries a logo la lagrada com Consultation of the property of the contract o indo alle Missiperiose e se in co-bon e-con 41 e cranicalità. gay ay i gay ya jiran ngamiya oo maraay marabaan i maa Appearent of Personal C No. Genorator reamwener Cerritor Representation Compared NOTICE AND ADDRESS OF MANAGEMENT Production / wooddiscu! Transportour Receiver Loonsignee Appareur No. (Troynous ID No. Recoglionners | des ImaGere of a errormodayan - definition to a Scale Ticket mail Summissioners Januari bare Hagazzton No. / N° a management Voltacie / Voltacie Eleganguita alberta: Advisor du les de Jeroedaire Trainer - Russian Na. 1 FDX 12.7 FRIOK Trans. Bylan No. 2. 7 margagine wager BRICHL E Days I new No. However 8100. Best to Care ENWIFICHIMEN TAL solves a more considered from the residence of the constraint of the constraint of the Part Disc. Abbesticition also beautiful for Johnstein and Property and Property of the American State of the American Sta ge door like plants var veloog don't gave / stick protection. Belt govered 1 till swetter A of gover Ans transcriptions. 6041737286-19 Francis - Sauther streets have Harve a supprisor portor (2011) non as I gard access to a soline of moreovery VAC. SPAINS 1623 94 FME 75022 BIRNAGY Providence Latino No. No. N. Granwaliya Taken Miles According requirements WASTE KARROW TRUES LIE A SF W Commodity: 525 % Мобилин оборности saway at 1 Gode to per-Bases-street yields Customer: GOOD CASE course und be-Reser 14. bed' Dork root Abriens VIII as Brio Catherine 5,000 1 170 At the engine were 20: BS Boosto Date Day R mi Date-OCDE Signature: (604) 941-3474 www.westernscale.ca Western Scale Co. Ltd. THE SAME STATE VS50-567 Tarre Moura - Schooland Athlander Late during press Generalizer / correlation confidences: I contry that the Albander, corrections of Part Albander and Teat - Script and Teat - Script Scrip NOT BE LIGHT SPECIAL CONCERN SPECTORS Attended all production (expedient shifted per ∞) is a support of b folic b y θ .

SOIL ARRIVAL FORM

	Metals	HC
RL+		
CL+		Х
Other		

City of Vancouver - FOI 2022-084 - Page 631 of 1790

Project Number: 14-1005-300

		Living Balance Investments	Site Location:	456 Prior Street
Scale Tic		4th Floor, 52A Powell Street	3 3	Vancouver
	RECEIVED	ouver, BC		
	<u>FEB</u> 8 \$ 4665	504,215.0801	Site Phond No	604-374-8187
	5:45:25 03:02/3015	Hydrocarbon Contaminated Soi	- - han-	2-215 Fall Fish 3
1		at we Name Signatur	e	Shiomen I Dale
<u> </u>		ER Fandem Tryck&Pony X Truck & Transfer		
	T4(<u>02</u> () (by	NUMBER TRUCKING LTD	-	
	17090 Apr		- 13	ovo kg
Commodity:	2007 15	Truck No 104	- 17	
	£ 505			
Customer:		Shipment Date		
Signature:			NAMES OF THE STATE	
Western Scale Co. Ltd		sternscale.ca y (Sumas) pipremediation Facility	Phone No: (60	4) 682-6678

SOIL ARRIVAL FORM

	Metals	HC
RL+		
ĊL+		X
Other		

Project Number: 14-1005-300

Section A		GENERATO)k		
Generator Name.	Living Balance Investm		Site Location	456 Prior Street	
Gorkitator Address:	4th Floor, 52A Powell St	(LR9)		PORCOURT	
Vance	puver, BC		3 111		*
Generator Phone No.	8 04,216.0801		Sile Phone No	604-374-8187	
Description of Waster	Hydrocarbon Contaminat	MONOTON CARDON SERVICE CO.	ham	7015 Fe	s. 3
Generalor's Represen	No. of the contract of the con	Signature	<u> </u>	Shipment Dat	C
Section B.		TRANSPO	RTER		
THANSPORT	Truck&Pony Truck & Transfi			ricket Cast	
Driver Name/Title: Phone No : Vehicle License No./P	Truck No. 104 Prov. HM9545			стіякі5 6 <u>3.74</u> 2 д	15
Criver Signature	Snipment Date]			
Section C		FACILITY			Ć.
Burnaby (Sumas) 81 4623 Byrne Road, 80	oremediation Facility maby, BC			4507) te	î
Receiver Comments				19860 i s	
			Commodity:	28730-14	
location			Customer:	icit	
Name of Authorized	70	556	300 V (2000 000)		14 44 10 10
	3 Appel	ONG TRIBUTE			

Name of Authorized Agent

SOIL ARRIVAL FORM

	Metals	НĈ
RL+		
CL+		X
Other		

Section A	GENERA	TOR	
Generator Name:	Living Balance Investments	Site Location.	456 Prior Street
Generator Address:	4th Floor, 52A Powell Street	T:	Vancouver
Vaner	puver, BC		
Generator Phone No:	604.216.0801	Sita Phone No:	604-374-8187
Description of Waşte:	Hydrocarbon Contaminated Soil		
Breen Hanne		a here-	The state of the s
Generator's Represen	ative Namio Signatur	0	Shipment Dale
Section B	TRANSP	ORTER	
Onver Name/Title: Phone No.: Velicle License No./Pr	Truck No. 02 ov. FA 3300 3 Feb Jois Shipment Detc	Scale '	Ticket 30361966 FOR 05 966 ———————————————————————————————————
Section C	FACILITY	3	
Burnaby (Sumaa) Bio 4623 Byrne Road, Bur Réceiver Comments			
		-	02 (30 tra
facation;			(F)(4) by
		Commodity	,519,£ 15 E

Signature

Customer;

Signature:

Was/era Scale for Ltd. /6/41 941.34/4 www.waschgritstrafe 68
City of Vancouver - FOI 2022-084 - Page 633 of 1790

:005

F SAME DAR SOTE	E-mail: Info@trai	MAR	ur -m	REMEDIATI
R 400ness // / 120,00 \$	1	T ADD	ME SULM793 MC88 4623	BYRNE R
M COTO 1758 13		CIT		\$33Y
EAMS AAD CONDITIONS Continues of Carron was presented by a wyprodon services performed under this Ortal Lading	y regulations of the Province	celar BiC resp	lecting Water Carder Services the	foreby incorporated by millionings and gov
рина⊊та. У 11-Q.5	OMDER WO.	14-	1005-300 5.00:	
ND DE POES 30 TO DESCRIPTION	WEIGHT.	TIME	FOR CARRIER'S USE ONLY	u.e.
120 CONTAINA	N.	51381	SMALL FLAT	FAGIGHT
Empty 128	POIL		LARGE FLBT	AuveliGF
0017 22	9.49%		VXX	£ Q.O.
		FINISH (MINE	INSURANCE
			SHE(E AXLE	OVERTIME
			TANDEM AXLE	
			ТЯАСТОР	GŠT %
Signed Shipper's Agent			19ALL09	TOTAL
RECEIVED IN GOOD ORDER EXCEPT WHERE NOTED	Cyango	14/	, IL478	\$

450 WEST 12TH CANCIDATED 311 WENTYM TEN 450 450 See HAVE BEEN TREET

CITY OF VANCOUVER

NOVEMBER 2	1, 2314 Perior sinc	FIRE PRE	VENTION D	IVISION	PERM	Marine	P	FI 411932
CALDESCRIPTION LT B BLK 2 5 SET DICH MODELS RECORD	PL 7989 DL 1a1	NWD TO PLAN	. 7989 con	itrd)		456 PRIOR	ST	
1		arabaaaa			V2-m15-	peces:		
окаточения NOV 21, 2019	SP(T)S(TTS) 4207	SECT VALUE	DASANARO SALIA	Fried	NO	PERSON HOTOR		
PC-SUF PAR GITTELES		REAFCHURT (BUT I	a-ra			DATIVE		
	ATION SERVICES OURSIDE DRIVE		TY OWNER			CHITACT I		
REVIREDILAV I	3C V72	3T2					- 1	
5. E24-597 a529 W	austiceuse 551096.	7EL 747	MSL-CSY (##14KA		2.40	er So	0.00	A CRAME NE CAFE
Depute remova permanently and 1 flock removal: 1 Cetas merijon: 1 This peculi lat book and 15 book mil 2 The premier 56 book flock 1 Fackly Reg 1 Fackly 11 = 5 Underground	the thake, regerner and . The hanks who purely or produced by capping or produced by the substantial by the part of the substantial by the part of the substantial by the part of the substantial by the substantial by the part of the substantial by the substantial between the substantial bet	ining much he ce plugging. Section 4-16-2 of in complement ward of insection of distributed from the manner with the open and the manner with the open and the section of t	reved from the g I the Voncenver th the previetor enced within your or a period of 9 quarde, elusing or voquire!	round and pu Fire Gy-ine. e of Kouse D daya from to 0 daya. , ato. se or it! mood car	eyed of Decesoi e dame : guilled i	ythonica 17 By law Hc. 63 Of 1880ANTA, by The Occupa	e pile e ss	nda marr he
T Centractes Untwek	wast be an acte (pe SPECIPICA/REI		by the vancouver IY/RMT 1TB	The second second	enga SA	evacen Aukorpica/	REJORBAC	e govinan
GROVALS FEQU RE	PORR FERRIT IS COMPLI	STED INCLUDE		CORTANTHATO TRAFFCTION		garas s	- 608-97	Cybrox.
sa open 7 deyr	opection (AII)-1) i e m week from TAM fra im 506 BYS 'USS' - Poi	10PM. 265 days	s vect. Alec. C	ur 24 heur b	at 10 mog	Inopections.	tecking	
THE PERMIT HOL HOS ENFORMATIC	REQUIPES THYPSÖTTÖR CEN SHALL BE RESPONS H CW DIMETATION OF T I.I CENTRE DH 504-69 AVOLHE	JBLE POR ARRAMO TRUS DE MORE ES	HHICH HOISE IS C	HB SAGALISES MEMIEO. SEE EAM SHGNE DATE	TRE NO.	SE COMINCE BY SUMAS RA	HEDSAT	*555 TON SERVICES D
				ISSUE	DBY	J WONG		
				FORT	-	_		

PSID20001 REVISED REBAILS

NOTIFICATION OF INDEPENDENT REMEDIATION

Land Remediation Section PO Bes 9347 Str Prev Govt Victoria B.C. VSW 9M1 Telephone. (250) 387-4441 Fax: (250) 387-9935

Section 54 (2) of the Environmental Management Act requires anyone undertaking independent remediation to notify the Director of Waste Management in writing promptly on initialing remediation and within 90 days of completing it. You must complete this form and sand if to the e-mell or making address below to widom the ministry when independent remediation of your site begins and ends

A site plan (may be obtained from some local government web sites) and a Land Title record must be included with your submission.

ection I	Timing of Remediate	01)	
Check (h	ne following items as ap	plicable. This notice is given	for
	Initiation of independe		Completion of independent remediation
	Both initiation and cor	nplation of independent remed	Jiation
	Completion of remedia	ation resulting from a spill. Est	imated date of spill:
	Incident Report (DGIR	t) #	YYYY-MM-DD
Provide	the following if you are	sending us a Notification of	Initiation of Independent Remediation
Star	1 dale I YYYY-MM-DD	Estimated completion date	Estimated duration (Days)
Ѕсоре о	f remediation: 🗌 Who	ole site 🗵 Part of site	
If you ex	spect that remediation of	if the entire site will take longe	r fhan one year attach a remediation schedule.
Provide	the following if you are	sending us a Notification of	Completion of Independent Remediation:
Start	date: 2015-02-02 YYYY-MM-DD	Completion date: 2015 YYYY-MA	
echon II	Land Description		
-	D Number (if known)		
	PIO	010 292 209 or	PIN
	Legal Description (or metes & bounds)	Lot B, Blocks 2 To 7, 9 and	20 District Lots 181, 196 and 2037 Plan 7989
	Latitude	Degrees 49 Minutes 16	Seconds 34.6
	Longitude	Degrees 123 Minutes 5	Seconds 413
lite Civic /	Address or Location	Street 456 Prior Street	
(i.e. ne	sarest roadway)	City Vancouver	Postal Code V6A 2E5
ection III	Property Owner and	for Operator (if applicable)	
	Name	456 Prior Street Holdings Lt	d., Inc No. BC1017782
	Address	4th Floor, 52a Powell Street	
		City Vencouver	Province/State BC
		Country Canada	Postal /Zip Code V6A 1E7
	Phone	Fáx	

Name of Fire Contact Nam				
Addres	s Street Suite 320 - 4400 Dom	inion Street		
	City Burnaby		Province/State B0	c
	Country Canada	Posta	l /Zip CodeV5G 4G3	3
Phar	e 604-430-0671	Fax	604-430-0672	
ection V Primary Land	Jac	5 = 14.1	- 39 -	
ontaminated Sites Regula	on land use classification at the sit-	e surface (check	(one)	
☑ Industrial ☐ Cor	nmercial 🗌 Residential 📋	Urban park	☐ Agricultural	☐ Wildlands
escription of current opera	lion (e.g., service station) Warehou	sa		
a change in zoning or lan	Juse expected?			
	Change in land use			
rom	То			
rom .	То			
From	То			
-rom	То			
	To Suspected Source of Contaminate	ıon (e.g. leaking	y underground sto	rage lank)
ection VI. Confirmed or S	Suspected Source of Contaminate	ıon (e.g. leaking	y underground sto	rage fank)
ection VI. Confirmed or s	iuspected Source of Contaminate	ıçın (e.g. leaking	j underground sto	rage lank)
ection VI Confirmed or s Underground storage to Cil and gas industry op	iuspected Source of Confaminate nk (UST) grations	ion (e.g. leaking	y underground sto	rage fank)
ection VI. Confirmed or s ☑ Underground storage to ☑ Oil and gas industry op	iuspected Source of Confaminate nk (UST) grations	on (e.g. leaking	y underground sto	rage lank)
ection VI Confirmed or s Underground storage to Cil and gas industry op	iuspected Source of Confaminate nk (UST) grations	on (e.g. leaking	y underground sto	rage lank
ection VI Confirmed or s Underground storage to Cil and gas industry op	iuspected Source of Confaminate nk (UST) grations	on (e.g. leaking	y underground sto	rage fank
ection VI. Confirmed or s Underground storage to Oil and gas industry op Other (describe): Fill m	iuspected Source of Contaminate ink (UST) erations aterial	ıçın (e.g. leaking	y underground sto	rage fankj
ection VI Confirmed or a Underground storage to Oil and gas industry op Other (describe): Fill makes	inspected Source of Contaminate Ink (UST) Prations aterial Other Required Forms		y underground sto	rage lank)
ection VI Confirmed or S Underground storage to Oil and gas industry op Other (describe): Fill m ection VII Submission of	Suspected Source of Confaminate Ink (UST) Platfors aterial Other Required Forms or Actual Migration also submitted f	or this site?	y underground sto	rage lank)
ection VI Confirmed or a Underground storage to Oil and gas industry op Other (describe): Fill m ection VII Submission of	Suspected Source of Confaminate Ink (UST) Prations atenial Other Required Forms or Actual Migration also submitted for the submission	or this site?	y underground sto	rage lank)
ection VI Confirmed or s Underground storage to Oil and gas industry op Other (describe): Fill m ection VII Submission of Vas a Notification of Likely	inspected Source of Contaminate Ink (UST) Prations aterial Other Required Forms or Actual Migration also submitted for the submission of the submission	or this site? 2015-02-03 YYY-MM-DO	y underground sto	rage lank
ection VI Confirmed or s Underground storage to Oil and gas industry op Other (describe): Fill m ection VII Submission of Vas a Notification of Likely	on Report also submitted for this site. If Yes, date of submission on Report also submitted for the site.	or this site? 2015-02-03 YYY-MM-DO e?	y underground sto	rage lank

Section VIII Soil Investigation	ns and Remediation			
The following contaminants	⊠ Were found	☐ Are suspected	;	
List contaminants (and maximu	ım concentrations if know	n). Attach additional i	information if not enou	igh space.
Ethylbenzene = 97 ug/g	VH = 2,200 ug/g	Copper = 2,160	ug/g	
Xylenes = 330 ug/g	VH = 1,800 ug/g	Zinc = 1,210 ug	łg	
Was the soil investigated follow	/mg requirements and gu	idance under the Act	? 🛚 🖾 Yes	☐ No
Soit remediation strategy				
	⊒ Oth	rer (describe)		
Approximately 630 m ³ of soil w	ere excavated and transp	corted off-Site to Sum	as Remediation facili	y in Burnaby, BC.
Remediation standards used	🛮 Numerical 🔲 Ris	sk-based 🗌 B	lo th	
Section IX Groundwater an	id Surface Water Investi	inations and Remed	iatinu	
			0.1000.000111	
The following contaminants	Were found Were found Were found Were found Were found		그리 그 보기 없는 것이 없는 것이 없는 것이다.	
List contaminants (and maximum tentaminants)	Naphihalene = 190 ug/			ogn space.
LEPH = 4,000 ug/L	Mahumaiene - Tao ngi	c	, <u></u>	
Was the water investigated follows:	owing requirements and	guidance under the A	ct? 🗵 Yes	□ No
Water remediation strategy				
Pumping and disposal	⊠ o⊪	ner (describe): excavi	ation	
An area of approximately 240 is Burnaby, BC. The groundwate samples were less than the CS	r contemination was reme			
Remediation standards used:		Risk-based [□ Golh	
Section X Sediment Investi-	gations and Remediatio	ott		
The following contaminants	☐ Were found	G WANTE WAS	d 🗵 Not applicable	
List contaminants (and maximi				
724		(C)		
				*
Was the sediment investigated	following requirements a	and guidance under th	ie Act? Yes	□ No
Sediment remediation strate	gy			
Excavation and disposal	□ Oth	ner (describe):		
(include volume and intended the site)			nated sediments if ma	inaged away from
Remediation standards used:	☐ Numerical ☐ Ri	sk-based \square	Both	

For further information, please refer to the information under our key topic website on independent remediation.

TITLE SEARCH PRINT 2015-03-17, 12:29:43

File Reference: 12349 Requestor: Matt Cuddeford

CURRENT INFORMATION ONLY - NO CANCELLED INFORMATION SHOWN

Land Title District VANCOUVER
Land Title Office VANCOUVER

Title Number CA4203913 From Title Number BB1117483

Application Received 2015-01-28

Application Entered 2015-02-05

Registered Owner in Fee Simple

Registered Owner/Mailing Address: 456 PRIOR STREET HOLDINGS LTD., INC.NO. BC1017782

4TH FLOOR, 52A POWELL STREET

VANCOUVER, BC

V6A 1E7

Taxation Authority CITY OF VANCOUVER

Description of Land

Parcel Identifier: 010-292-209

Legal Description:

LOT B BLOCKS 2 TO 7, 9 AND 20 DISTRICT LOTS 181, 196 AND 2037 PLAN 7989

Legal Notations

NOTICE OF INTEREST, BUILDERS LIEN ACT (S.3(2)), SEE CA4203914

FILED 2015-01-28

Charges, Liens and Interests

Nature: EASEMENT AND INDEMNITY AGREEMENT

Registration Number: 301095M

Registration Date and Time: 1959-11-02 14:18
Registered Owner: CITY OF VANCOUVER

Nature: MORTGAGE Registration Number: CA4204157

Registration Date and Time: 2015-01-28 11:56 Registered Owner: CMLS FINANCIAL LTD.

INCORPORATION NO. BC0124226

Remarks: INTER ALIA

TITLE SEARCH PRINT 2015-03-17, 12:29:43

File Reference: 12349 Requestor: Matt Cuddeford

Nature: ASSIGNMENT OF RENTS

Registration Number: CA4204158
Registration Date and Time: 2015-01-28 11:56
Registered Owner: CMLS FINANCIAL LTD.

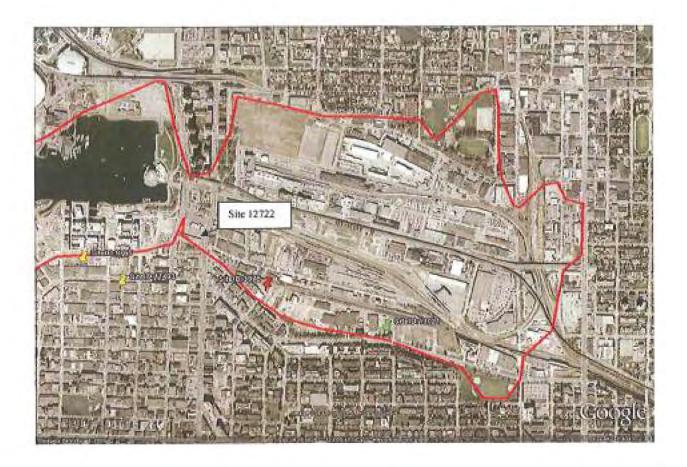
INCORPORATION NO. BC0124226

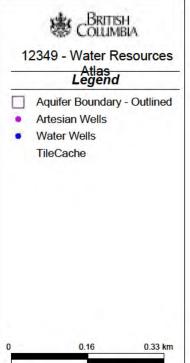
Remarks: INTER ALIA

Duplicate Indefeasible TitleNONE OUTSTANDING

Transfers NONE

Pending Applications NONE


APPENDIX B DW APPLICABILITY SUPPORTING DOCUMENTS


456 Prior Street

Fri Jul 17 2015 07:45:20 AM

Copyright/Disclaimer

The material contained in this web site is owned by the Government of British Columbia and protected by copyright law. It may not be reproduced or redistributed without the prior written permission of the Province of British Columbia. To request permission to reproduce all or part of the material on this web site please complete the Copyright Permission Request Form which can be accessed through the Copyright Information Pane CAUTION: Mages obtained using this site are not

CAUTION: Maps obtained using this site are not designed to assist in navigation. These maps may be generalized and may not reflect current conditions. Uncharted hazards may exist. DO NOT USE THESE MAPS FOR NAVIGATIONAL PURPOSES.

Datum: NAD83

1:8,000

Projection: NAD_1983_BC_Environment_Albers

Key Map of British Columbia

MONITORING WELL ID: MW15-19

Well Type: Groundwater Monitoring Well

Project Location: 370, 410, and 456 Prior Street, Vancouver, BC

Drilling Contractor: On-Track Drilling

Drilling Equipment/Method: Split Spoon/Hollow Stem Auger

Well Location: 410 Prior Street

Project Name/No.: 12349

Client: 456 Prior Street Holdings Ltd.

Engineer/Geologist: FOM

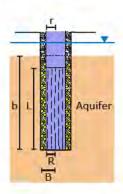
Drill Date: June 12, 2015 Page: 1 of 1

Depth (f/m)	Symbol	Soil / Sediment Description	Sample Type	% Recovery	Sample Analyzed (Y,N)	Sample ID	Elevation (m)	Well Construction	Remarks
t m _O		Ground Surface						N M M	
1 m 0 - 1 - 2 - 3 4 5	XXXX	Sand (FILL) Grey sand (Sechelt and River sand FILL), moist, dense. Odours and/or staining were not observed.							ne 17, 2015) —
- 3		Silty SAND							e ater (Ju
- 4		Silty SAND Grey-brown silty SAND, trace gravel, moist, medium dense. Odours and/or staining were not observed.							Bentonite Depth to Groundwater (June 17, 2015)
5		Wet at approximately 5.0 m.							10/20 Silica Sand Der
- 7 - 8 - 8 9		SANDSTONE Grey SANDSTONE bedrock. Odours and/or staining were not observed. Weathered and wet from approximately 7.6 m to 8.0 m. Dry at 8.0 m.			- =4			*	Bentonite
-		End of Hole						VIIIIII	

Co-ordinates:

Date of Water Level: June 17, 2015 Water Level (from TOC): 1.826 m Surveyed Water Elevation (m): 0 Well-Borehole Diameter: 15 cm Well Casing Diameter: 5 cm Well Casing Material: PVC Well Screen Slot Size: 0.025 cm Depth of Well (TOC): 5.8 m Well Elevation (TOC): 0 Well Elevation (Ground): 0 Datum:

Keystone Environmental Ltd. Suite 320 4400 Dominion St, Burnaby, B.C. V5G 4G3 (604) 430-0671


Wells

Project: Prior Street

Number: 12349

Client:

Location: 456 Prior Street

	Name	Penetration	L [m]	B [m]	1
1	MW15-19	Partially	1.8	0.102	

Keystone Environmental Ltd. Suite 320 4400 Dominion St, Burnaby, B.C. V5G 4G3 (604) 430-0671 Slug Test Analysis Report

Project: Prior Street

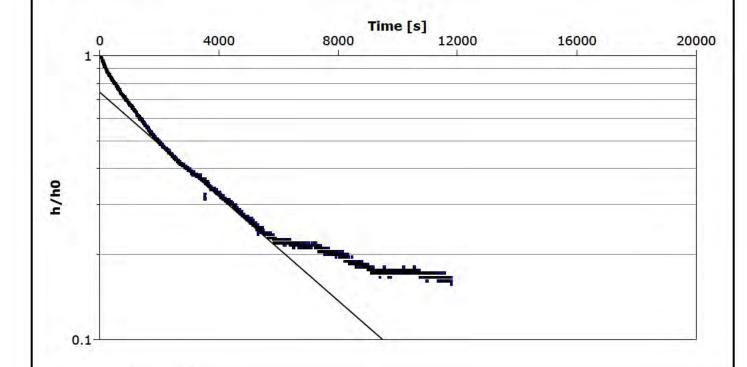
Number: 12349

Client:

Location: 456 Prior Street

Slug Test: MW15-19 Test A

Test Well: MW15-19


Test Date: 6/16/15

Analysis Performed by: FOM/CJP

MW15-19 Test A

Analysis Date: 6/18/15

Aquifer Thickness: 10.00 m

Calculation using Bou	wer & Rice	
Observation Well	Hydraulic Conductivity [m/s]	
MW15-19	1.21 × 10 ⁻⁷	

Keystone Environmental Ltd. Suite 320 4400 Dominion St, Burnaby, B.C. V5G 4G3 (604) 430-0671 Slug Test Analysis Report

Project: Prior Street

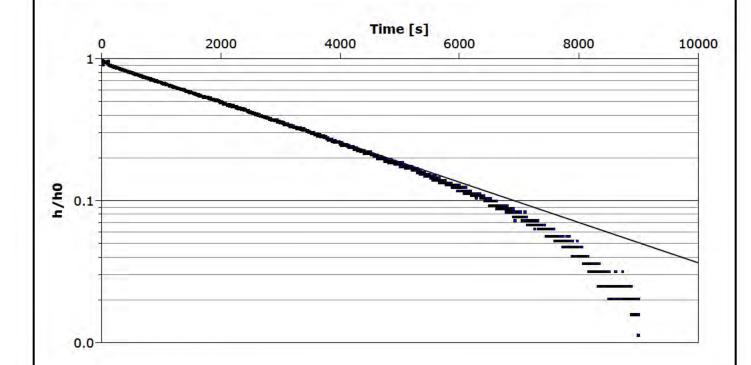
Number: 12349

Client:

Location: 456 Prior Street

Slug Test: MW15-19 Test B

Test Well: MW15-19


Test Date: 6/17/15

Analysis Performed by: FOM/CJP

MW15-19 Test B

Analysis Date: 6/18/15

Aquifer Thickness: 10.00 m

Calculation using Bouwer & Rice	
---------------------------------	--

Observation Well	Hydraulic Conductivity [m/s]	
MW15-19	1.86 × 10 ⁻⁷	

APPENDIX C PHOTOGRAPHIC DOCUMENTATION

Photograph 1: View of the former UST area remedial excavation – looking southwest. June 02, 2015.

Photograph 2: View of the fill material quality and wood content – looking east. June 1, 2015.

Photograph 3: Vacuum truck excavation north of CS15-14 (0.8) - looking south. June 25, 2015.

Photograph 4: View of the excavated area during backfilling activities – looking northwest. June 4, 2015.

APPENDIX D SOIL DISPOSAL SUMMARY

Project #: 14-1005

Contaminant of Concern:

Contaminated Site Address:

456 Prior Street, Vancouver

Analytical: Keystone Environmental

metals

Treatment Facility:

Sumas Biocell Burnaby

Contact Information:

Nicole Macdonald

Arrival Date	Hour	License	Numbers	V	Veight(KG)		Tracking	Weigh
		Truck	Trailer	Gross	Tare	Total	Form	Bill#
1-Jun-15	10:40	CR2171		36,590.00	17,500.00	19,090.00	14-1005-300	83498
1-Jun-15	10:48	BR0273		35,300.00	17,500.00	17,800.00	14-1005-300	83499
1-Jun-15	13:13	BR0273		39,610.00	17,500.00	22,110.00	14-1005-300	83507
1-Jun-15	14:37	BR0273		37,040.00	17,500.00	19,540.00	14-1005-300	83517
1-Jun-15	14:53	DP0150		34,270.00	17,500.00	16,770.00	14-1005-300	83518
1-Jun-15	15:02	BR0273		37,260.00	17,500.00	19,760.00	14-1005-300	83519
1-Jun-15	15:11	CR2171		39,470.00	17,500.00	21,970.00	14-1005-300	83521

Project #: 14-1005

Contaminant of Concern: metals

Contaminated Site Address:

456 Prior Street, Vancouver

Analytical: Keystone Environmental

Treatment Facility:

Sumas Biocell Burnaby

Contact Information:

Nicole Macdonald

Arrival Date	Hour	License	Numbers	1	Weight(KG)		Tracking	Weigh
		Truck	Trailer	Gross	Tare	Total	Form	Bill #
2-Jun-15	8:41	CR2171		38,750.00	17,500.00	21,250.00	14-1005-300	83525
2-Jun-15	8:47	BR0273		36,810.00	17,500.00	19,310.00	14-1005-300	83526
2-Jun-15	8:59	HL5283		35,570.00	17,200.00	18,370.00	14-1005-300	83527
2-Jun-15	9:06	DP0150		33,640.00	17,500.00	16,140.00	14-1005-300	83529
2-Jun-15	10:39	CR2171		40,150.00	17,500.00	22,650.00	14-1005-300	83534
2-Jun-15	10:47	BR0273		37,380.00	17,500.00	19,880.00	14-1005-300	83535
2-Jun-15	10:57	HL5283		37,690.00	17,200.00	20,490.00	14-1005-300	83537
2-Jun-15	11:02	DP0150		37,340.00	17,500.00	19,840.00	14-1005-300	83538
2-Jun-15	11:36	DD8337		38,900.00	17,500.00	21,400.00	14-1005-300	83540
2-Jun-15	12:11	CR2171		39,220.00	17,500.00	21,720.00	14-1005-300	83543
2-Jun-15	12:29	HC5283		35,710.00	17,200.00	18,510.00	14-1005-300	83545
2-Jun-15	12:45	DP0150		36,060.00	17,500.00	18,560.00	14-1005-300	83546
2-Jun-15	12:49	BR0273		39,140.00	17,500.00	21,640.00	14-1005-300	83547

Project #: 14-1005

Contaminant of Concern: metals

Contaminated Site Address:

456 Prior Street, Vancouver

Analytical: Keystone Environmental

Treatment Facility:

Sumas Biocell Burnaby

Contact Information:

Nicole Macdonald

Arrival Date	Hour	License I	Numbers	Weight(KG)			Tracking	Weigh
		Truck	Trailer	Gross	Tare	Total	Form	Bill#
2-Jun-15	14:11	CR2171		40,260.00	17,500.00	22,760.00	14-1005-300	83554
2-Jun-15	15:30	DD8337		40,110.00	17,500.00	22,610.00	14-1005-300	83563
2-Jun-15	15:32	BR0273		35,810.00	17,500.00	18,310.00	14-1005-300	83564
2-Jun-15	15:52	HC5283		38,070.00	17,200.00	20,870.00	14-1005-300	83566
2-Jun-15	16:10	DP0150		37,440.00	17,500.00	19,940.00	14-1005-300	83568
2-Jun-15	16:17	CR2171		37,990.00	17,500.00	20,490.00	14-1005-300	83569
2-Jun-15	17:16	FA2800		40,590.00	17,500.00	23,090.00	14-1005-300	83571
3-Jun-15	15:12	CR2171		42,540.00	17,500.00	25,040.00	14-1005-300	83602
3-Jun-15	15:33	CR2171		36,010.00	17,500.00	18,510.00	14-1005-300	83605

Project #: 14-1005

Contaminant of Concern:

metals

Contaminated Site Address:

456 Prior Street, Vancouver

Analytical:

Keystone Environmental

Treatment Facility:

Sumas Biocell Burnaby

Contact Information:

Nicole Macdonald

Arrival Date	Hour	License	Numbers	V	Weight(KG)	Tracking	Weigh	
		Truck	Trailer	Gross	Tare	Total	Form	Bill#
4-Jun-15	9:19	CR2171		42,690.00	17,500.00	25,190.00	14-1005-300	83610
4-Jun-15	9:53	BR0273		38,230.00	17,500.00	20,730.00	14-1005-300	83614
4-Jun-15	12:43	BR0273		41,810.00	17,500.00	24,310.00	14-1005-300	83620
4-Jun-15	14:10	CR2171		33,010.00	17,500.00	15,510.00	14-1005-300	83629
25-Jun-15	12:23	HC3031		29,360.00	26,870.00	2,490.00	14-1005-300	84161

Project Total:

676,650.00 Kg

676.65 Tonnes

APPENDIX E WELL DEVELOPMENT AND PURGE AND SAMPLE FORMS

Keystone Environmental Ltd. Groundwater Developing, Purging and Sampling Record

Version 2.0

GENERAL INFORMATION

Weit Citres Typ	AATRON 28	Flust Sich-up 0	m akena a	Lçek Norb	Contract of the Contract of th	Work Casing	2-inch (51 m Diameler or	
Scropned inte	val (m); <u>4</u> :	- 91 Well Heat	e Vapour Read	ng 1.2		. 🗍 RKI Eagle		
Dov Oale: 🔽	1 15 115	TION AND OBSERY Wealher. <u>C</u>	4 <u>4 ک</u> ه ۲	£	Purge Os	GINFORMATION	Weather	Curry that
Ocpili to Waler Depth to Profil	r hom Top ol yej ili applesat yr Çolumn (X- yej in Well w () ma = ti r weV	V)	metres / A D We We Y 6 D Wros	res 146 5	Purge Sa Walerra i	Cohing sel lo:		
Development Wateria Purno Surge Block (il Bailer Other Japacity)	hng	B'/	Turbidily Relin Beloie Dev Altoi Dev	200	Farbiditj Parging Sampling			
Well volume Pargos (L)	piH	Conductivity (n5/m) or im5/m)	Temperature 4°G}	OAP InV:	00 (mg/L)	Tene	inSTOG)	Rate Jm Dmin.i
Ō		405	20 /	424	W-11500-115	7:16	<u> 15.567</u>	بيا (۱۲۷۲ <u>م</u>
J	2.4	155	231	/23		5 21	6 / 75 t	
2	7 2	192	20.9	12 5		7.65	0.499	
3		14. 1"	21.8	1.7		$\overline{-85} \geq 5$	0.40	
		-	-		-	-		
_			*	_	-		-	-
		T Description:				Golous (initial) Recovery ** *	Cle ≈ (stab Slow ☐ Modera	
Oxidation-Red	luchon Polani de elotermini	nd Stability Guidance nat (110mV): avid if a nd subjectively Using r, greater than 116 cm	ggisgaple . Disau La scele al 1 la :	ihed Oxyger 10. where 1	n(≛100s) is clea⊭, l 0 isk	opaque		3%); 0 cm drawdown
SAMPLING P	ARAMETER ime	INFORMATION (A)	Dete and Time Date and Time	5-1,751	10	krenyscal Laborat)) Date and Firms:	ory phases	
		EPHI O	PA Car	(EX,VPMM) AHs Innocited Pi eld Filter & (nencis		; Malels	0000
VOC/VPH EPH corrected Nor-Chlonnat Olssoved Mol Pesticions			pi-			☐ Dihe		

Keystone Environmental Ltd. Groundwater Developing, Purging and Sampling Record

Vorsion 2.0

COMMENTS:

GENERAL INFORMATION

		fu Vencyour S	8	lient <u>Le k</u>				2
<mark>VELL IHFORM</mark> Vell Cover Typi		Hush 🔐	7.00	Lock Locate No-lo	ck 🗫	Well Cosing	2-inch (51 m Diameter or	ogher:
Scrooned Inform	armı. 🛵	ri ^t Wall Mea	n Vapour Rea	dig [3	ppm or WEEL	☐ RKI Eagle	MinuRae 🗆	Other
EVELOPMEN	T INFORMAT	TION AND OBSERY	VATIONS			INFORMATION		The second secon
Day, Date:	4.16/14	Woalhar, <u>S</u>	U-12 2 2 5	5 (S	Purga Dari	a July 16/14	Weather	Survey Freis
	150000000000	тос (х) 3.33		zres	Мотала	Votonia = 3 + wa	U volume	
oppin to Water Jopin to Produc Jengar of Water Johnson Volum Josef Volume I	from Top of (c) (it applicat) r Galomin (X * ir ir Well = (* teratopėd teratopėd	Casing (Y) 2.3 let (-Y) 2 2 volume 2	motios 74 kir 2 00 Ario	ĸ	Waterra P Peristallic Barlor Other (spi	npie Method ump juong sens: scily		년 연 0
Development A Mateira Pump Burge Block (lin Bailer Other (spechy)	ne		Turbidity Rati Defore Dev Alter Dev		Purging Sampling	VISITANI	=	
Vell valuma Purged (L)	ρH	Conductorily (us/on) or uns/on)	Temperature (*Cl	9 OHP (Vm)	DO (mg·t)	Time	DTW IntBTOC;	Rala Imbraint
0			82,000	32 - 32	00000	10:06	2 998	0.15
7	6.6	754 (16.6	120		10113	2523	76
2.	6.4	266	14.1	154		10:24	7.625	1/2
3	6.5	$\exists \eta$.	14.1	_42_		10.52	2. 44/3	<u> </u>
		-		-				
					-	_	-	
				_		-	U. Versen	100
						Colour (initial) A. Barryery ** \$	(stab	
Mour Ye	s∐ No 🖪 s □ No □	YDASBIIDION:						
Shaen Ye VOTES, Field F Doidnbon-Redu Turbidio meo l	s 🗌 No 🗔 Parameter en knion Potemi Ne determine	y Description: d Stelphly Gwdanco al (+10mV);	policable: Dess le scalc of 1 to	gNed Okygen i 10. whara kii	(1110%) siclear, 10 €sio	DBQNIR		3%) A om drawdown
Shagn Ye uQTES, Field F Suidation: Redu Turbiuity may l "Recovery Esh SAMPLING PA	s No D Parameter an Introduction Potenti be determine Imale - Slow: RAMETER II	d Stetyldy Guidanco at (+10mV); and if a d subjectivety using greater than 10 cm NFORMATION [A]	policable: Dissing scale of 1 to drawdown N	olved Oxygen 10, where ki declarate, eligi re	(110%) siclear, 10 is o illy lower than	DBQNIR	Fast: Ailbin 1	filom drawdown
Shagn Ye uOTES, Field f Oxidoxoon Redu Turbiolly may l "Recovery Esh	S No D Parameter en ction Potenti be detarmine imals - Slow: RAMETER II me: (i e LEPH/Hi d Phonol	d Stetyldy Guidanco at (+18mV); and if a d subjectivety using greater than 10 cm NFORMATION (C)	policable: Diss a scale of 1 to drawdown in Date and Turk Date and Turk S P	olved Oxygen 10, where ki declarate, eligi re	(110%) s clear, 10 is o illy keese than illy keese than illy Ai illy BE	peque ID cm drawduen selvicel Leborate Oale and Hima: EPH Glyco PCBs	Fast: Ailhin 1 By price of the second secon	filom drawdown

KEYSTONE ENVIRONMENTAL LTD. WELL DEVELOPMENT, PURCE, AND SAMPLE FORM

GENERAL INFOR				140	Ou n	Br.	Dv	o d hyddyn
	Mr. 2	26	Project Name(No Da t e		W 12/1	Clien Wealhe	. <u></u>	Sin plus 10°
WELL INFORMAT Well Gover Type		Flush K Ü Slok-up II	Lock 🔲 No-lock 🔞			sing 2. Vioralhei	inch (51 mm)	攻
Sprepaed Interval	(indicate on	(2):						
Well Нола Vараит	r Reading	<u>95</u> pp	m	%1E	l.	pd Gaster	:h 1238ME 🔘	MiriHaa 🗆 Hnu
DEVELOPMENT A	AND PURG	NG INFORMATIO	N AND OBSER	VATIONS	Dev. Oste		Purgo Date:_/	12/15
Depih to Boltom o Depih to Water fro Depih to Product (om Top of Ca of applicable	ssing (V) <u>Z</u>	124 metr metr	es Yalafi es	Voiume Davi	экраев"	s well volume	Aires
angth of Water C Volume of Water L Ter 2-Inch dametr	n WeX = CX	71 = 2	mec: tires		ит чосты Идарта Риц		MOLYMBIA	Aires
Development Vi in			Purge Sampl	e Mathad			Twister	lty Ratings ^{Zeercoloe}
Materia Punip Materia Punip wifi Saller Other (snecily)	45769	:k	Saller Waterra Perstallic pun Other (specily		n / 資	A	itar Dovelopmer urgeng	<u> </u>
Mall val ume Purged (L)	pH	Conductivity [uS/on] or (mS/cm)	Temperature (*G)	ORP (mV)	DO (mg/L)	Time	imBTO	Fa:e
_1	7. <u>८</u>	575	<u>12.</u> €	-44		300		
٤	7,2	245	15 2	-50	_		-	
3	7.2	FOL	15.0	-51_	_			
					-	-		
			-			Colour	_	_
		Description				Pecovary	Stow 🔲 Mod-	erale 🗆 Fost 🗎
NOTES		echaris analysis	4 Alaseland until	- '- Toennaealı	ure (±0,2 ሻር (±10%) or #1); Suedilo Co k2 mg/L = whi	ngirotamoe (±3%) ichovor is graele	it vķ; Turkidity (105s)
*Turbidity may ae								
SAMPLING INFO	RMATION A	WD OBSERVATION	ONS Dale an	≬ Emar <u>M</u>	Pec 15/16			Dester My 12 PST
Sampling Methor	d		3645			farbidīty Ast S≏H\PA\I	ү лдэ «Эн» гом вэл	
Waterra Pump Peristallic Pump			卤			Other		
Sailer Officer (specify)			Ш			Analytical La	boratory^	Muxxya
VOC/VPH EPH consoled iso Cintoryrated Phros	c.LEPH/HE	i and Preservetim	ВТЗ РАН РСЕ	EX,VPHI HS	d to Labera		ds) PH hend dal Melals CBs	
MTEE Dissolved Metals			i Files & Preson		Otkr_	YOUR		

(20) 25 MCA – Will Development Parge, and Sample Romi.

COMMISHTS:

Vitage 21

lonélorin g We ll scator: <u>55</u> jamoler:	Market Control of the	Avr. Voncino		ject WName :nl:	123.	ntures		
VELL INFORMA Van Cover Jypo	ATION	Flush 51i3k-up 0	materia s		* <u>G</u>	Well (Jasing	2-inch (51 mr Diameter ork	ilte:
Scrooned Interva	f(10°);	well Head	Vagoriir Hose)	ng ZD.			M/iniAae 🗆	
EVELOPMENT	MEGRMATI	ON AND OBSERV	<u>ATIONS</u>		1.5		AND OBSERVA	
Dev Date		Weather	450	- 1	Purge Oal	€ Feb. 11/1.	Wealher	410 F 11 E
Sepih jo Praduci Longth ni Water Volume of Waker Volume of Volume of Development & Natoma Pump Surge Block (tim	rom Papial C: n jil applicable Column (X-Y) nin Well = (X- g = 6 P woll is lawelapad lawelapad	98rių (Y) 2,23 Y; + 2 nume	T meter mete	196 3	Purge/Sen Watern P Penstatio Batter Other (spe	nple Method ump pusng wils)	Mres
Bailer Other (specily) _						······	Low Low Same Man	ol, Bass
Well volume Parged (L)	рН	Canductivity (JS/cm) or (mS/cm)	Temporalure (*C)	OPP (my)	DO (mg/L)	Timp	Ing (ac)	(m⊌/min)
0					10000000000000000000000000000000000000	21.50	2.225	-24/m
1	3.9	710	119	- 24		2 (95	8.55	14
2	4.4	-	11.6	-1		A deli	3, 77	-
3	9.4	748.	11.7	 -77		3:45	2. <u>5.7</u>	q_{\odot}
		-		_		-		-
Stean Ye	s ⊐ No 🖫	Pescription: Description:				Recovery " 1	_ct ч~(greb Sluw □ Modera	ie @°Fast ∐
Oxidation-Redu	ction Putentia	Stabliky (Suidance I (±10mV)) and if sp I subjectively using greater than 10 am	optigania; Disso o scale of 1 in	ilved Oxyger 10 whore 1 oderete, skip	is clear, 10 is a My Iower 1000	CHOJA .	Fast: wiltin 1	O cm chavedown
SAMPLING PA 'H) Dain and Te		(FORMATION (A)	Date and Time Date and Time	F+5-1	/ //5 A	nalytical Laborat ; Date and Time:		
vOCrVPH EPH consitled Non-Chlomale: Uissolved Mela Pesticides	d Pirenol	.рн) () () ()	P. Ci	FEXOVÊH(M) AHs hlorinated Pl old Fillor & f H	encis	Clyc: Púe: Total Other	: Mersia	
Duplicate Samp	da ID:		Duplicate Sa	am pia Paran	erers	-		
		sos Haqurements (2				

GENERAL INFORMATION Monitoring Well ID: Project # Name: Location. (Chert. Semplor: WELL INFORMATION Well Done: Type Flust Los Well Casing 2-math (5) mm); No-Inck SIKH-UP Diameter or other: in above grade ppm or %LEL | RKI Eagle | MriRae | Other; Well Head Vapour Reading Screened Interval (m): DEVELOPMENT INFORMATION AND OBSERVATIONS PURGING INFORMATION AND OBSERVATIONS Purge Dete: Dav. Dale: Weather: Depth to Bottom of Wall from TOC (X) nielres Minimum Volume - 3 - well volume HHYFI Depth to Water from Top of Casing 1Yi metres Dapon to Product til applicable) Purge Sample Method irelies Length of Water Column (X-Y) metrae Waterra Pump Valume of Water in Well + (X - V) + 2 Alres Perietaltic guong serts Мытыт Volume и 6 • мей услыте Alves Bauter **Total Volume Developed** lives Other (specify) **Сенегорием Мехьос** Turbiolity Ratings " Turbidity Railings Walerra Pump Relora Day Pieging Singe Block James Affer Day. Sampling Haile' Other (specify) time seempting only Waltvoluma OH Conductiony Temperature DAP DO Time DTW Anie (V ni) (mBTOC) Purged (L) (JaSicm) or (masican) (2°) (Agh) Imbirin. Yos | No Description; Yes | No Description; Odour Colour (initial). (stable) Sheen Slow Moderate Fast Recovery ** NOTES. Field Parameter and Srability Guidance. pH (±0.1 standard unics); Temperature (±0.2 °C); Specific Conductance (±3%). Outlation-Requestion Polantial (+10mV); and it applicable: Dissolved Coygen (+17%) Turbidity may be determined subjectively using a scale of 1 to 10, where 1 is clear, 10 is opaque. "Recovery Estimate - Slow: greater than 10 cm drawdown - Maderate: sfightly lower than 10 cm drawdown - Fast: within 10 cm drawdown SAMPLING PARAMETER INFORMATION (A) Date and Time: Analytical Laboratory (B) Date and Time: (C) Dale and Time: (D) Date and Time: VOCALI STEXMINIME EPI EPH corrected (i.e LEPH/HEPH) PAHO **Orycols** E PCBs Non-Chlorinated Phenol Chickhaled Phonois. Dispolyed Melala Field Fifter & Preserved? Total Metals Pesheidos Other Duplicate Sample 10: Cuplicate Sample Parameters:

COMMENTS:

NOTES, Baltia and Preservative Requirements Correspond to Laboratory Standards.

GENERAL INFORMATION

Well Cover Typ	IATIOH IC	Fush 😅 Slick-up 🗓	// A2040		ck 🖳	Yell Casing	2-inch (51 me Diarhater or)	other:
Scrooned Inter	var(m): <u>C</u>	13 Well Hea	d Vapour Head	ing 44			MANRO (
DEVELOPMEN	IT INFORMAT	TON AND OBSER	VATIONS			100	AND OBSERV	
Dev Date: 🗐	1314/14	Weather: 5	ل معر ١٩٤٤	- 1	Purge Date	<u>د آسل اخ</u>	/1Y Weather	<u> </u>
Depth to Bollor Death to Water Depth to Produt Singth of Water Volume of Water Volume of Water Tatel Volume	ringmi Top of C et (ill applicabl er Column (X-) er er Wert = (X na = 6 * ersn s	Casing (Y)r.e\` let /)1, \(\) \(\) Y \(\) 22 \(\) \(\) X (\) (100	metics netics Afres Wes	165 188 5	Purge/Sant Watern Pe	n gia Maince' Imp Nongsero	р маулис ————————————————————————————————————	8
Oavelopment Waleria Pump Surge Plock (li Baler (Wher (specily)	me:	المرابعة المرابعة المرابعة	Turbidily Ratu Before Dav Alter Dev	**************************************	F <i>urbletty</i> Purging Samuling	Relings *		
Well volume Purged (L)	рН	Conductivity (above) ar (a Oran)	Temperature (***)	ORP (mV)	ටට (mg/k)	(Time	Law libra sampeng d DTW (mIBTOC)	Ralû (ml-min.)
٥	-	(क्रम्	112			13199	1. 472	<u> (5. (16)</u>
1	6.6	[22	17.2	12/_		11.54	2-15	
	6.3	657	12,5	128		H^1/Δ	8.125	
2	100	601	12.4	134		11:15	218	_
3_	4 1.4							
3_	4.4				-			
3_				_	_			_
3			_	=	_			=
3 Odaur Yo	 es] No ISI	Description:	=	<u> </u>		Colour (initial) Recovery '' S	Clear (stable)	ie) to Faši
Odour Yo Sheen Yo NOTES, Fjeldi Oridanjon-Had 'Turbidiy mry ''Hacavery Es	es	Description: Description: d Stability Gwdenor al (±10mV); and if a d subjectively using greater than 10 cm	gplicable, Disso paiscale of 1 % pdrawdown = M	rived Oxygen 10, where 1 coerate, stigl	Temperature (1) (1) (1%) s clear, 10 is op My Icwei (han 1	Recovery '' S I.2 PC): Specific aque Diomicrowdown	Iow [[] Modera Genriuctance (1) Fast; within 1	to ☐ Fast ☐ 34s): () cm drawdow
Odaur Ye Sheen Ye NOTES, Flaid Oxidenion-Had 'Turbidily may "Heronciy Es SAMPLING P	es	Description: Description: d Stability Gwdener al (±10mV); and if a d subjectively using greater than 10 cm	gplicable, Disso paiscale of 1 % pdrawdown = M	olved Oxygen 10, where 1 colerate, sligh	Temperature (11 1 (141%) s clear, 10 is op hily lower than 1	Recovery " - S 3.2 °C): Specific actie	Constluctance (b) Fast; within 1	to ☐ Fa\$l ☐ 345): () cm drawdow
Odour Yo Sheen Yo NOTES, Fjeldi Oeidanion-Had 'Turbidiy mry ''Hacovery Es	es No Mes	Description: Description: d Stability Guidance at (±10mV); and if a d subjectively using greater than 10 cm	opplicable, Disso parson of 1 to a drawdown M) Oare and Time) Data and Time PV Cr	olved Oxygen 10, where 1 colorate, stigles 505/5 :: rex/vPH/mT AHs nignusted Photol & P	Temperature (1) (1) 1910% (2) 10 (2)	Recovery " S 9.2 *C): Specific sque Digmicrowdown alytical Laborate Date and Time: EPH Glyco PCBs	Constitution to (2) Fast: within 1 Try / / / / / / / / / / / / / / / / / / /	to ☐ Fa\$l ☐ 345): () cm drawdow

() 7 p. 12 p. 15 p. 15 p. 16 p

OENERAL INE Monitoring We Locabon: 서오 Sampler:	HID: Acar	Mark Okan U ban Jawa	Pro Cle	ject #:Name en!	121×	08-02		
WELL INFORM Well Cover Typ	B	Hugh Z	m 49010-9		a 🖳	Well Casing	2 inch (\$1 m Diameter or	ethar:
		Well Hea		ing <u>81.2</u>	-	L		THE RESERVE TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW
4 75	- CO. T. C.	u Weather. ()				ale. <u>54,</u> 75.		
Nepth in Botton	n ol Well ter Iren Top of or fil applicat r Column IX er in Well = () ne = 6 * well	m TOC (X) # Casing (Y) 1- ble) Y) 0- X - Y) • ? (.()	2 35 metr SY metr metrogram involves involves involves	res 108 - 178 -	<i>Purge/S</i> . Waterra Peristali Bailor	n Volume = 3 * eré single Helhod Pump is pangsere: pecily		Alres
Development Waterra Pump Su•ga Block (fir Barter Other (spec≼r)	108;	E /	Turbiouty Rails Before Dev Alter Oav	3252	Funblin Purging Samplet	1000	=	
Wali vo ume Puig a d (L)	рН	Conductivity fuSions or (#5/5m)	Tempéráturé (°C)	ORP (mV)	DO (mg/L)	True	tow tow company of (ATW (mBTOC)	Rais (mL/min.)
0						排稿等	1.54	0.15,8/w.
1	0.4	705	. 19 3	20		$\frac{-iJ/R\gamma}{2}$	1.625	17
2	_G.13	419	19.4	46		11:30	1.644	
	5.9)39 ——	19, 4	<u>*//y</u>		PIL	1.635	
_			_		_	Colour (initial)	(stab	
Shean Ye NOTES: Feed Oxidation-Redu Tubelity may	es No Parametar ar relien Potent be determine	Postripfon: Descripfon: of Slabilly Gludance lal (+10:nV); and if a st subjectively using greater than 10 cm	pplicáble. Dissol la acaio of 1 to 1	Med Oxygen IO, where 1 i	(±10%) setear 10 is	Receivery (* 6 (±0.2 °C) Specific opaque	Elow Modera Conductance (±	te 🗌 Fast 🔲
BAMPLING P/ B) Date and T	MAMETER	IMFORMATION (A)	Date and Time.	Market &	i i	Analytical Laborati D) Date and Time:	ary July 19	4
VOC/VPH EPH acreated Non-Chlodinsta Dissolved Meta Pesticions	d Phonol	іЄРНі	PA Ch	Fixov PH/MT Hiş korinarledi Ph ud Falter & P	encis	EPH Gyco	i Mojals	00000
Duplicate Sam	ple ID:		Duplicale Sa	mple Param	ehoes:	900000 (100		

COMMENTS:

NOTES: Boille and Preservative Acquirements Correspond to Leberatory Standards

Keystone Environmental Ltd. Groundwater Developing, Purging and Sampling Record https://doi.org/10.1007/purging.20

VELL INFORMA Well Cover Type	F 5	Tush 🛄	PROAP.		Ø	of Gasup	2-inch (61 mi Diameter ur	offici.
Screened Interve			ad Vapour Read	in <u>gil</u> i∑ papi			MiniRae AND OBSERV	
Dev Mate:				2			Weather	
Sepih to Bottom Sepih to Water to Sepih to Pinduct Langth of Water Volume of Water Volume I Volume D	of Wall from Ti tom Top of Cas (क्षं applicable) Column (X-Y) का Well = (X-Y) a = 8 * कक्षणे स्ट्रां	DC IXI शंख (Y) IS	metree Area Area	nes res	Purge/Samp Waterra Pur Peristallic to Bailer Other (speci	тр энцээ (15 (у)	emulov V	iñe
Dewelopment Al Valerra Pump Junga Bleck (tim Jakor Otter (spécily)			Turbidity Astur Before Dev. Aller Dev.	<u></u>	Turbidity B Purging Sampling	stings 1	=	
Nell volume Piirged (Li	ρΗ	Cenductivity Gentjar (m5/ant)	Femperature (*C)	OAP (mV)	DO (mg/L)	Time	-Los live samplings DTW (m8TOC)	Rate (mL/mm) }
0			120			1225	1.15	011/1/10
Į	6.3	710	190	55 -		12:32	1.225	
2_	6.3	480	204	_54 .		12:37	1.245	
<u>2</u> 3	6.1	522	211	51		17:443	1285	
4_	62	549	213	<u>-50</u> -		12 -48	1305	-
	-		-		-	-		
dour Yes haen Yee		escaption: <u>568</u> escaption:	dic like sim	es		your (initial) acovery ** 5	(stab lov= □ Modess	
Jeidahan Raduc Zudaddu mau b	tan Poläntiät (s. dutuminissät s	±1@mV); and n : hismlesty usin:	e pH (±0.1 sion applicable: Disso glaiscale of 1 to il dissociati M	hved Oxygen (± 10. whore 1 is e	(0%) oar. 10 is oost	oue		
SAMPLING PAR B) Date and Tin			k) Dale and Timo) Dale and Timo	:			ηγ	
/QC/VPH : PH corrected ti lan-Chlain's led Dissaived Metak Posticides	Phonel	H 0000	P/A Ch	TEX/VPH/MTRE AHS Minimaled Phero M d Finer & Pres I	fa [Vielels	
				mple Paramete				

Session 2.4

WELL INFORMATION WAS Cover Type Flush Sock-up Mell Histor Vapour Aearting Or 7 ppm or % I FI. DEVELOPMENT INFORMATION AND OBSERVATIONS Dev Onle: Well Histor Vapour Aearting Purge Date: The Weather: Purge Date: The Weather Weather	
DEVELOPMENT INFORMATION AND OBSERVATIONS. PURGING INFORMATION AND OBSERV	other.
Depth to Bottom of Well from TOC (X) Depth to Water from Top of Casing (Y) Depth to Product (if appicable) Length of Water Column (X-Y) Volume of Water in Well = (X - Y) * 2 Minimum Volume = 6 * well volume Total Volume Developed Development Method Waters Pump Before Dev. After Dev. After Dev. Development (ime: Bailer Other (specily)	er: <u></u>
Well volume pH Conductivity Lamptrature ORP (mV) DO (mgA) Time (m870C) 0 1 20 648 19.0 45 116 2.125 2 6.9 635 19.1 47 127 2.125 3 6.3 641 19.2 46 126 2.123	greit/ / Habe (mLbrain.)
Odour Yes No Colour (initial) (Initi	rate 🖾 Fest 🔲
	5/1/2

2 2

KEYSYONE ENVIRONMENTAL LTD. WELL DEVELOPMENT, PURGE, AND SAMPLE FORM

GENERAL INFOAMATION Well No. Location: Sample: REM		Project Name/No Dale:	- <u>(23</u>	√4 <u>का}र</u>	Gkent: Wegather	Clany	La holdess
<u>WELL INFORMATION</u> Well Cover 7you	Flush IC Stowar D	Lock D No-fock D		Well Ca Diamete	sing 2 ind or or other:	di (51 m/o) 🏻 💆	
Screened interval (ndicals o Woli Hoad Vapour Reading	els 1	m7	%LE	L	∭ Gasiech	IZRME (MINB	iae 🗖 linu
DEVELOPMENT AND PURG	ING INFORMATIO	N AND OBSERV	ATIONS	Dev. Data: .	P	urge Tale Ma	Lir
Depth to Borlam of Well from Depth to Weller Acro Top of 6 Depth to Product (It applicable Length of Weller Column (K N Volyme of Water in Well = (A (for 2) ach diameter well cast Development Method	Casing (Y)	794 pelm mate mate melm litres	es Total es e es Altreiro Total	Ирфита Дем	la Purge = 7 • m	eli valume	Ungs Set Process
Waterta Pump Waterta Pump with Surge Bl Refler Other (specify)	» D	Barlet Wiptorra Posistallic poet Other Jepscityl		BQ (F		ye Dovelopmeni r Dovelopni 6 M geog	
Well valuine pH Purged (L)	Conductivity q.Slan) iv (mS/cm)	Temperature (°C)	ORP (mV)	. 20 (mg/L)	t	Law have sensiting sent DTVI (mBTOS)	Hato (mL'min l
1 50	Por-	12.3	<u>-54</u>		-	1.434	
<u>L</u> <u>6-t</u>	S13.	12.2	-62	. —	HH-35	2 opc.	
3 6.1	.5194_	17.7	<u>-54</u>	-	-		_
	-	-					
Odour Yes 🗆 No 🔯	Descáplan:		-		Colour	chall year	2.1.5
	Description:				Recovery 8	Slow 🗖 Moderate	Ø Fasi,∕⊠
NOTES Field Parameter and SintyM Oxidation-Reduction Potenti *Turbidity may be determine SAMPLING INFORMATION	y Guidance: pH (+0 al [£20+1V]; and dia disubjectively using	i z starvierd unds ppi cable: Dissol a scale of 1 to 1	s); Teingera ved Osygon 0, where 1 i	s c can, 10 is	s cpaque.	EPH Sample Cate	
Sampling Malhod Waterra Pump Pedslatic Pump Barar Other (specify)					Turbidity Bating EPH/PAHS CitiesS Analytical Labo	<u>3 —</u>	407
Parameters Sampled (Batt VOC/VPH EPH corrected (i.e. LEPHH Chlorinated Phenolics MTBE Dissolved Metals	EPH) H	PAI PCI	:Jovern Hs Bs ylene Glycol		Pho Too	intol al Metals	

COMMENTS:

120425 MCA - Well Development, Proget and Sample Forms

Monitoring Wel Location: 45 Sampler.	C Pris	14-G r Sti, Vario	ror β ci	olegi # 'Name ierii. <u>Fari-</u>	12349 Cull Ven			
WELL INFORM Well Cover Typ: Screened hyen	2	Flush Sock-up C			ck Ūď	Way Casing	2-inch (51 m) Diamater or i	Oither:
		TION AND OBSERY		1	333		AND OBSERV	
		Weather		- 1	200 000 000	201		WE FIRE
Серіћ и Волог	ngl Well frem from Top of (prifer applicable Column (X-) er ar Well = (X-) frem Well = (X-) frem Well = (X-) frem Well = (X-) frem Top of (X-	100 (X) 3 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	22) me	s ings '	Mowner of Purgers and Water States Caller Other Ispo	/olunie c 3 * wc npla Method unip (stengael v city) Metingae*		Krea
Wall salama Parged (C)	ρΗ	Conductivity (uS/em) or (mS/em)	Temperature (°C)	: :)BP (inV)	DO (mg/L)	, T _e ne	ce Neserphy : D1W (mBTCC)	Rate
0			2000			21-27	1.725	_3.24/mg
1	3.9.	502	10.2	-7/		2100	1.92	49
2	38	534	10.2	- 76		2.75	2. H.V	19
3	3, 7	<u> </u>	10 1	<u>+9/</u>				
							-	
			-			-		9
				_	-		-	-
Odaur Ye Sheen Ye	s □ No □ s □ No □	Description:				Colour (initial) Recevery 11 - 3	(stab) Slow 🔲 Modera	te) 1e
NCHES: Field F Oxidation-Pedu 17 unylegousza	Paranielei an Jetien Palenti Da detarmina	ig Stability Guidance iglight(mV) land illag id sympodively using greater than 10 om	policistile: Oiss a scale of 1 to	olved Oxygen HD, where I	i (-10%) is clear, 10 is of My lower theo	eq.le. II) om drawdum	· Fasi within I	() çm drawdawn
SAMPLING PA (B) Data and Tr		INFORMATION (A)	Date and Tim Date and Tim	n Febli	1/15 A) 19;	awical Laborat Date and Time:	ory Marries	
VOG/VPH EPH corrected Nen Chlorinate Dissolved Mela Pesticions	d Phero	EPH;	P 0 F	TEX:VPH:WIT AHS Might afted Ah lield Ailler & P H	enals	O EPH Olyco POBs Total Other	Melas Melas	0000
Dup Idam Sam:	;O1 alq		Duplicate S	ample Param	eters:	<i></i>		
NÇITES Conte	and Preserv	alive Requirements (Carrespond to	Laboratory S	Nancayets	1		
COMMENTS:				ben	20 (4) 09	more d	pyrens	

GENERAL INFORMATION

Acontioning Well ID: MUST in C Project #/Nar Documents A from Cience	ma. 123111
NELL INFORMATION New Cover Type Flush ☐	ck Way Gasing 2 inch (51 mm)
Screened Interval (m): Wat Head Vapour Reading	ppm or %LEL ☐ RKI Eagle ☐ MiniRee ☐ Other
Development Information and Observations Dev. Date	Purge Deta: Weather:
Well volume pil Conductivity Tamperature OR Purged (L) (*C) [mV]	bg Tame DTW Rate (mg-til) (mg-
Odour Yes No Cescopilon: Sheen Yes No O-Cescopilon: NOTES: Feed Parameter and Stability Guidance, pril (±0.1 standard units Oxidation Reduction Potential (±18m²/), and if applicable: Dissolved Oxyo (Turbidity may be determined subjectively using a scale of 1 to 10, where	yen (+1.1%) Ties cigar, 10 is apaque.
"Recovery Fellmale - Slow greater than 10 cm drawdown - Moderate, st SAMPLING PARAMETER INFORMATION (A) Date and Time	Analytical Laboratory Markova
B) Date and Time. (C) Cale and Time:	(D) Date and Time:
VOCAVPH EPH corrected (i.e. LEPH/HEPH) Non-Chlorinated Phonol Dissolved Mistals Positiones Physicals Physicals Physicals	☑ Glycols □
Duplicate Sample ID: Duplicate Samale Para	ain-ellers:
NCTES Bonile and Preservative Requirements Correspond to Laboratory	Significants

COMMENTS:

Appropriate 0

OFFICE ALL	WEGGMATIC	ч

Well Cover Typ		Hush G	n ana-e		a 🗗	Wed Casing	2-inch (51 nm Dienverer or (dhen
		i <u>√</u> Well Har		ding 1.3		L [] PIKI Eagle IG INFORMATION		
	533 333	TON AND OBSER		e .		هاه. <mark>(۲ کام الا</mark>		
American Colonia and Colonia and Colonia		/Weather:		HPE6		вю. <u>о за</u> т т Votorke = 3 + же		C - C - C - C - C - C - C - C - C - C -
Sepili to Wale: Repili to Produceryth of Wale Johnne of Wale Manalista Volume i Tofal Volume i	:) (4 applicable : Column IX Y :: in Wet = IX :: in Wet = IX	91 0.28 7 - 0.28	DAD		Wale•ra Peristalii Raller	emple Melhod Pump C (udrossilo pecily)		
Cevelopment / Natena Pump Suge Block (Ilr Jailer Jiher (spacify)	Fethod ne	- E	Turbiolity Rank Belore Dev Alter Dov		Furblett Purging Samplin			
Wali volume Purged (L)	ρΗ	Conductivity (Liston) or [m5/bh)	Temperature (°C)	OBP (mV)	DØ (MØL)	J Juna	Low row sempling of DTNV [mBT(CC]	rty Raie jost⊭min.j
0			1/22			极	2.05	(5.5
(6.2	237	16.3	62	W=90	1355	2.229 7.	295
2	5.8	88	16.1	104	265 - 470 265 - 262	2:01	2.46	
3	5.8	197	16.0	118	S===33	2:06	2.71	
	199		18 - 1 8	W	80	_		
		-	_	_				
Oddor Ye	——s □ Na XI	Description				Çalbur (initial)	de (stabl	e) dady
NOTES: Field F Oxidation-Redu	'areineler sno clion Potentia	Description 1 Stability Guidance # (+ #0mV); and # # I subjectively using greater than 10 cm	e: pal (20 1 sta applicable: DISS	ndard uruts); [*] olved (Oxygon da where II i	i110%) selea∟10 ka	- (±0.2 °C) . \$реси с освоив.	Constuctance (£3	%):
SAMPLING PA (B) Date and Ti		FORMATION (A) Date and Time Date and Time	e)		Analytical Laborati 3) Oale and Tkne:		
VOC/VPH EPH corrected Non-Chionnato Dissolved Mota	d Phonol	PHI 0	P. C. F.	TEX/VPH/MT AHs Historicated Ph Sed Filler & P H	emola	EPH Glyco PC6s Total Olher	Motels	00000
Posticides								

KEYSTONE ENVIRONMENTALLYD. WELL DEVELOPMENT, PURGE, AND SAMPLE FORM

SENERAL INFO Well No. Location: Semplor:	Wein -	7	Project Name(NO Date:	(23° <u>M</u> e	(9 / (2/)(*	Chenk Weatho	2.7.2	st hilling
WELL IMFORM Well Gover Type		Flush (13) Silet-up □	Łack ☐ Ne-bek 🖫	- 101		ing 2- r crallier	inch (51 illin [†])	þ
Screened Interv	gl (ingleale)	units):						
Moli Head Vapo	хи Рвафпу	<u>2</u> <bb< td=""><td>π</td><td>%LEI</td><td></td><td>🛱 Gasted</td><td>:h L238ME 🔲 M</td><td>wiRae □ Hrv</td></bb<>	π	%LEI		🛱 Gasted	:h L238ME 🔲 M	wiRae □ Hrv
VEVEL ODMEN	T AND PUE	RGING INFORMATIO	N AND OBSERV	VATIONS	Dev. Dala:		Purge Date Ma	- 12/15
Depth to Botton Depth to Water Depth to Produc Length of Water Adjume of Mater Par 2 Juch diser	n of Well fro from Top of ot (it applical r Cournn (X er & V/e1 - 7	m TOC (X) Casing (Y) ble (Y) (X - Y) + 2	meir meir meir meir kiras	es Aliman es Total l es Manae	um Volume) fotonid Gaw	Nobed a Purge = 3 *		Alres Alres Alres
Javelopment I			Purga/Sample	e Ligithod			Turblaity	Ratings Recoverable
Materra Pump Meterra Pump : Saller Other (spoolly)		Skock	Hailer Waleria PerisiBho-hai Olher (specify	ngants 2.^	i B	A	ekgre i Sevelopmen Her Govelopment Virging	<u></u>
Vell valume Purged (L)	рН	Conductivity (u5/cm) or (m5/cm)	Temperature (*C)	ORP (mV)	DO (mg/L)	((mBTQC)	Rale
L	7.6	<u>ų 40 </u>	12,1	-72	-			
Ž	7.6	341	12.0	-89	_		।এছ	
3	7.6	<u> 386</u>	120	-05	_	-		
	-	+	-	-	_	_		-
	—	el no cons				Colour	Nex	
		🎝 Descripton 🗣 Descripton:				Recovery	Slow Made	ato 🖾 Fael 🛱
NOTES Field Paramete Oxidation-Fied "Turbidity may	er and Stubi ugtion Foter bin determin	ity Guldanon: pl: (±0 ibal (±20,mV); and 6 a ned subjectively using IN AND OBSERVATION	l,2 standard one ppharable: Disso pelscale of 1 to	s:: Tampérsi lvod Oxygen Lü, where Li	s dear, 10 is	s opaque.	ЕРН Sample Do	
Sampling Met Waterra Pump Poristallic Pum			暮			Toublaify Re SPHYPAH _ Other _	nings - 2 to row shows	
Barer Other laped (y)			- -			Analytical Li		2948
Peremeters S VDG/VPH EPH corrected Chlorinated Fh MTBE Dissolved Mel-	l (re. LEP-l- rendics	片	PA PG	ewienn Ha Mane Glycol			os) Prenol Total Metals PCSs	

(70) 25 MCA - Well Development, Proge, and Sample From

COMMENTS.

Well Cover Typ		Flush 🗗	_пака с	7664543	ch 🗓	Ved Casing	2-inch (64 mn Wameley or o	iber. <u> </u>
Screenad Inter	varjmi	Well Hono	Mapour Ready	1 <u>9 /26.</u>)				
A CONTRACTOR OF THE PARTY OF TH		TION AND OBSERV					AND OBSERVA	
iev. Qaler <u>i F</u>	D. 11/15	Weather: 6 /	c +112		Purge Cate	1811 K - 1811	Yeather;	Svany FE
ispah in Bolton Icpih to Water Ispah to Produ Ispah of Wate Iclume of Water Ichal Volume	from Top of 0 or jil applicable or Column (X.) er in Well = (X no = 8 + well Developed	Ceang (Y)	metres Mess Mess Wess Wess	es 95	(. 39) rus Purge/Sam Walena Pu	pla Mained area libra to to	YeoloneY	w
lavefapméril Vaterra Pomp (inge Black ill aller Kher (spec/y)	ule <u>2 er</u>	ر الله الله الله الله الله الله الله الل	Partiolity Relies Selece Dev Alter Dev		<i>Turaldiry</i> : Parging Samuling			
Vell colume Purged (Li	He	Conductivity (usion) or (mS/em)	Temperature (*C)	CRP (mV)	(m 3 y-) DO	Time	of wither unway or DTW [mSTOC]	Rate (mUmo j
٥	22 27					11:03	1.317	0.72/-
1	CMI	680	11.9	118 -		11.08	$I_{+}^{\alpha}(\psi)$	
2.	4.27	642	11.0	115		μ ∂	1,25	
3	638	653	11.5	1000		11/12	2.01	
	6.39	670	12.0	93		D. F	2.152	_
9							$\sum_{i} = \frac{1}{i} \cdot f^{i} \cdot \dots$	
<u> </u>						100000000000000000000000000000000000000		(e) J
		Lucscription:				Geleur (initial) Recovery ** 5	(stable) (stable) (stable) (stable)	e 🗆 Fael 🗀
Sheen Y NOTES: Field Cxidebran Rac 'Turbicily may "Recovery Et	es No	Posselption: ad Stability Guidance (at (±10mV); and if ap NI subjectively using ; greater than 10 cm	plicable, Bisso a scale of 1 fc i diawitown - Mo	Med Dilygor k0, whore il oderate islig	Temperaturé (± n (116%) is dear 10 ls ep olly lower than	Recovery ** 5 0 2 45); Specilic iaque iù ciri drewdown	Stok [2] Moderal Conductance (2) Fast, within 19	196):
Sheen Y NOTES: Field Oxidebon Had Hurbicily may "Recovery Es SAMPLING P	es No	Phase Iption: Ind Stability Guidance (at (±10mV); and final (x) subjectively using (greater than 10 cm) INFORMATION IAL	plicable, Bisso a scale of 1 fc i diawitown - Mo	Med Dilygor io, where to oderate slig c Fe Mark	Temperature (± n (110%) is dear 10 ts op ally lower than 1 th 7 Am	Recovery ** - 5 0 2 50); Specific raque	Stok [2] Moderal Conductance (2) Fast, within 19	
Sheen Y NOTES: Field Cxidebran Had 'Turbicily may "Recovery Et	es No Ca Paramoter an Justion Potentine De determine Dimaie - Slow ARAMETER Lime: 1 (ng. LEP Hill ed Phanci	Posseription: Indicate the state of the second	picable, Dissola scale of 1 fc f diswiftner	Ned Daygor O, where I oderate stig E)OV PHOVE OHS Its property	Temperature (± 1 (110%) is dear 10 is epoilly lower than 1	Recovery ** 5 0 2 °C); Specific caque to on drewdown plylical Laberato Date and Time: EPH Glyco PCBs	Conductance (2) Fast, within to any province - Malais	196):

Vertion 200

				99.50.50
ELL INFORMATION Felt Cover Type Clush Stick-up	Look [nason grade Nu-och [] Weil Casio	g 2-mch (54 m) Dianierer ork	
preeried (vyerkal (m)) Wall Hoad Vapour	r (Regolvi <u>g la Thii</u> ppim s	or MUEL 🗌 AKI E	agle (Internation (Olher:
EVELOPMENT INFORMATION AND OBSERVATIONS	97.1		TION AND OBSERVA	
ev. Date: Pt3 11 It Weather Of C	<u>+) </u>	lurge Cale <u>P</u> t	3 14 17 Weather	survey !
evalupment Melitod Steria Funip Selore D	metras nimics Pi Anos Pi Anos Cores Ores Cores Whatings Piev. Pi Piev. Pi	orge-Sample Meth Valerra Punip		ws
fell volume pH Canductivity Tempe urged (L) (J.Stanter (mStant) (*C		(00 Tin ng:l.)	Low flux somperpil ite DTW (mBTOC)	Rate (MEmin.)
<u> </u>			<u>1.241</u>	0.15
1 <u>612</u> 320 11.	7 29 _		50 13	_ 4_
1 615 130 H	3	_115	53 13	-
3 617 <u>330 11</u>	<u> 10 </u>	D:0	· 6 1.3	
			_	
roour Yes No Description: He like	sheen	Colour (In	itial) 9 (stab	
OTES Field Parameter and Stability Guidanes I pH (20 tertanon Reguetion Potential (210mV), and dispolerable Furbidity may be determined subjectively using a scale i Recovery Egitmans - Slown grouter than 10 cm drawdon	- Discoved Orygen (±10° ul 1 lo 10 lahere 1 is dies	%) ir 13 is opague		354). Olom drawdown
Therefore I committee from Street, and the second a	V + 1000 100	Analyscal La		
AMPLING PARAMETER INFORMATION IAI Date and Specific and Time. (C) Date and	d Tipue	(D) (Vale and		
AMPLING PARAMETER INFORMATION IAI Date an	8TEX/VEH-MITH- PAHs Chlomated Phenois Field Filter & Preserv pil		EPH Glycols PCBs Total Metals Other	

Version 2,0

Lacation:	rell 10: 19 to 45 t Pr/20 5 Bilden am	to Vacion	ير ک ≻هاستي -	myect #/Nami ilient	Erista	349-14 1 Ventures		
WELLINFOR Well Cover Ty	pe I	Fluar D	7160	Lock	00× 🔟	Well Daving	2-incl+(5 tra) Diameter ork	
Screened Into	vvar (mi:	Wall Ha	ар Идроиг Ява	2019 66.7	_ppm or WEEL	ь 🗖 ЭКІ Садю	MiniBac 🗀	Olher:
	Water Control of the	ON AND OBSER	-10.00		PURGIN	G INFORMATIO	N <u>amd</u> O ss erva	TIDNS
Oev. Oale: 🚅	Treb. 11/15	Weather <u>O</u>	12 +17 6		Punga Da	ole	Weather	
Depth to Wate Depth to Produ Langth of War Volume of Wa	er from Top of Ca uct (8 appAcattle) Gridchimm (XIX) Ber in Well = (XIX) Ima = 8 # well vo	VI+2 1.3	moiros mi	eires Cives Bines PS	Purge:Se Walerra	C (where earns		Vires
Bailer			TurbidNy Ast Beloro Cov After Ucy		Tw <i>bla</i> lin Purging Sampling			
Well-volume Purged (L)	рн ;;	Conductivity (5-cm) or (m5-tm)	Temperaturi (*C)	e CRP (mV)	00 (mg/ 1	Time	UmBTOC)	nty (Rate (m.⊿nuer.)
10	-	_				12:25	1.140	0 <u>15 c/</u> m
- 1	6 07	310	44-1		1.5	13.25	1.15	
7	6.05	310	11.1		_7_	12:39	1.15	
3+	6 04	311	<u> 16 Y</u> .		8.	13.45	1 12	
			_					
					_			
Odour Y Sheen Y	es 3 No 0 D	escuption:	race 1	ut		Golour (initial) Regovery ** 9	10 (stabi itaw Moderat	
Oxidation-Red "Turbidity may	lucium Polemiai de determinació	istoirívil, and 4 a subjectively stang	pplicable: Uss a scale of 1 to	cived Oxyger 10, where	(1510%) a claar, 10 is c	+0.2 °C) Spec/w rpsque 10 (m drawcown		
SAMPLING P (6) Oate and I		<u>ORMATIÓN</u> (A IC)	Date and Tim Date and Tim			natylical Laborato ; Date and Time:		
VOCAVPIT EPH conecied Non-Chickinate Dissolved Met Posticides			р С F	.THX.VPHM] 'AHS irlorinated Ph ield Filtor & P H	ienals	Glyco Glyco FOBs Terall Cither,	Metals	00000
Duplicate Sam	rple ID:		Ouplicate \$	emple Param	eters:			
NOTES Bolile	and Preservativ	ч Гедопателія	Correspond to	Laboratory S	sanceros			
CÓMMENTS:		D-t	53000069	UE TO	SAU			

Wasan S.A.

COMMENTS:

Y <u>ELL IMFORM</u> Yell Cover Typs Screaned Interv	l	Flush Stick-up 🗆 Way Head	materia Vaccur Reads	Lock No to ng M, / .	A 🔯	ow Casing] RKI Eagle [2-inch (51 mm Diameter or o Atlan8ae 1 1	iher:
DEVELOPMENT Dev Cale: Depth to Bettem Depth to Water Depth to Product Length of Water Volume of Water	t INFORMA in t Well from Top of at (if applicat Column (X) or in Well = (ig. 6 + west) Personnel (ig. 6 + west)	TION AND OBSERV	ATIONS ATIONS	es 93 95 95 85	PURGING II Purge Date. Minipuni Ve 1,41 Purgersomp Watern Pur Pensialiti in Bailer	Avrice - 3 - wolf de Meithod hop care	AND OBSERVA Wesilhor, valume	Poin +5
Singe Block (lin tailor Jilher (specily) Vell volume		Conductivity	Temperáluré	OPP	DO	[————————————————————————————————————	DLV.	riy ————————————————————————————————————
Purger (L)	8	juSiem) er (m3/6/6)	(10)	(mV)	(mg.Ն)	1200	ImBTOCI	6.7
<u>C</u>	66	746	70.7	168		J. G. 104	រជា	18
1.5	4.3	7/3/6	105	167		10:00	1, 53	12
2	6.4	738	- 5.5	76B			====	-
	-						-	
		9f0gegrighen: ⊋f0escrighinn:		_		Salour (initial) Secovery ** S	(stab	ne) Clare
	Parameter a iction Poten	ng Stateliny Guidance Hall (1977-Y), and 4 a red subjectively using w. greater than 19 cm	g scale of 1 lo	13, where 1 oderale: slig	is clear, 10 is op. http://www.ihan.fr	алие	Fast within (0 cm dra#004
Quidepan-Redi	ARAMETER	INFORMATION IN	Date and Timi		200			9000

badan 2 di

GENERAL WEORNATION	
Monitoring Well to: MWIC-12	Project #/Nemie. 12 3 4 4 × 74
Location: 4/9/ 2.2- 9/4 1	Client County V to tax

v <mark>et L INFORMATION</mark> Vet Cover Тура	Flush 🗗 Slick up 🗓	л.дэрх амб	Lock	Wolf Casing	750	where
icraened interval (m)			23 ppm or SUE		A STATE OF THE PARTY OF THE PAR	
EVELOPMENT INFORM			Seminor Control Co.	IG INFORMATION		
Dev. Date March (C)	//C Weather: _C	lyvoly, 10°E		ale I		
Dapth to Bottom of Well In	ит тос (x) <u>17</u> 4.	-	Marona	n Volcone = 3 * well	voluno	Alrea
Depth to Water from Topio Depth to Product (il applica Lengga of Water Column () Polume of Water in Wolf = Myricaina Volume = 6 4 46 Total Volume Developed	I Casing (Y) shlet (Y) (X · Y) * 2 Y · Shure	metres metres wives wives	Wajeira Pensiali Ballar	emple Mathod Pump iduna and an peofy)		000
Pavelopment Mathod Materra Pump Surge Black (Imie Beiler Other (specify)	_ 8	Turbidity Railings Before Dev Alter Dev.	ტადიე		VEGENERAL SECTION SECT	
Well volume pH Purged (L)	Conductively (aStron) or (mS/Sm)	The state of the s	GRP DΦ (ην) (πg/L;	Tmp	-Lew line sempling α DTW (πBTOC)	Rate (m.t/miv.)
					-	
					-	-
	_				-	
	-			-		
	-					
Odour Yes □ No Sheer Yes □ No	☐ Description ☐ Description			Colour (mittal) Renovery ** 5	iow 🔲 Modela	ote 🔲 Fast 🔲
NOTES: Field Parameter Oxidation-Reduction Pote "Turbidity may be determ "Recovery Estimate - Sk	ential (±10mV); and #1	ippacable: ulssome	d configure (Environ	nonemia.		
SAMPLING PARAMETE (B) Date and Time:	R INFORMATION :			Analytics/ Laborati (Or Date and Time:	ory	
VOCAPH FPH corrected (i.e. LHPH Non-Chloringted Phonol Dissolved Metals Pestiddes	OHEPH)	PAHs Chlari	ovpHiMTBE : insted Phonois Fillor & Preserved?	CPn Glyco Glyco Total Gloco	Vietals	00000
Ouplicate Sangle ID		Duplicate Samp	de Parameters:			
	7.140					

COMMENTS: