URBAN DESIGN PANEL AGENDA

Date: Wednesday, June 26, 2019
Time: 03:00 pm
Place: Town Hall Meeting Room, Vancouver City Hall

03:00 pm Business

1. 03:15 pm Address: 3338 Sawmill Crescent (EFL parcel 13) (formerly 3310 Marine Way)
 Permit No.: DP-2019-00363
 Description: To develop the site with a 26-storey and a 6-storey residential rental building consisting of 337 dwelling units; all over two levels of underground parking.
 Zoning: CD-1
 Application Status: Complete Development Application
 Review: First as DP
 Architect: GBL
 Staff: Kevin Spaans

2. 04:15 pm Address: 3600 E Hastings Street
 Permit No.: RZ-2019-00057
 Description: To develop a 14-storey mixed-use building consisting of 75 secured market rental residential units and 19 moderate income rental units; all over three levels of underground parking with 41 vehicle stalls and 125 bicycle spaces. The proposed floor area is 7,068 sq. m (76,083 sq. ft.), the floor space ratio (FSR) is 7.10 and the building height is 48.2 m (158.2 ft). This application is being considered under the Moderate Income Rental Housing Pilot Program (MIRHPP).
 Zoning: C-2C to CD-1
 Application Status: Rezoning Application
 Review: First
 Architect: BHA
 Staff: Marcel Gelein & Grace Jiang

3. 05:15 pm Address: 3680 Hastings Street
 Permit No. RZ-2019-00059
 Description: To develop a 14-storey mixed-use building consisting of commercial at grade, 94 secured market rental units and 24 moderate income rental units; all over three levels of underground parking with 57 vehicle stalls and 156 bicycle spaces. The proposed floor area is 8,937 sq. m (96,203 sq. ft.), the floor space ratio (FSR) is 6.90 and the building height is 50.12 m (164.4 ft). This application is being considered under the Moderate Income Rental Housing Pilot Program (MIRHPP).
 Zoning: C-2C to CD-1
 Application Status: Rezoning Application
 Review: First
4. **06:15 pm**
Address: 3235-3261 Clive Avenue
Permit No.: RZ-2018-00047
Description: To develop the site with a 6-storey residential building and five ground-oriented townhouses for a total of 68 strata units; all over two levels of underground parking with 68 vehicle stalls and 138 bicycle spaces. The proposed floor area is 4,689 sq. m (50,479 sq. ft.), the floor space ratio (FSR) is 2.25 and the building height is 21 m (69 ft.). This application is being considered under the Joyce-Collingwood Station Precinct Plan.

Zoning: CD-1 (219) to CD-1 (new)
Application Status: Rezoning Application
Review: First
Architect: DYS
Staff: Tiffany Rougeau & Miguel Castillo Urena

5. **07:15 pm**
Address: 1636 Clark Drive
Permit No.: DP-2019-00287
Description: To develop a 10-storey mixed-use building consisting of 97 social housing units, a social enterprise space and a withdrawal management centre, including up to 20 short term transitional beds.

Zoning: CD-1
Application Status: Complete Development Application
Review: First
Architect: HDR
Staff: Patrick Chan
3338 Sawmill Crescent
(EFL Parcel 13)
3680 E Hastings Street
EXCERPT: pp. 15, 31-32 & 66-70 from:
Sections: 3 Building Type, Massing & Height;
5 Sub-area Policies; &
8 Design Guidelines

Full document:
Solar Access

Natural light is important to the enjoyment and success of public and semi-private open spaces. Building setback, separation and tower dimensions are controlled in order to allow light between taller buildings. Sunlight access to public parks and open spaces is a priority and developments should be designed to prevent shadow on these spaces and to minimize shadow on streets and semi-private open space. Siting of mid-rise buildings will minimize shadow on areas outside the precinct.
5.5 Sub-Areas V1 & V2: Vanness Avenue

5.5.1 Allow a mix of building including mid-rise buildings near the station and transitioning down to four- and six-storey apartments (suggested locations and height limits indicated in figure 5.6).

5.5.2 Mid-rise buildings are allowed on limited larger sites with a minimum lot frontage of at least 40.2 m (132 ft.).

5.5.3 Minimum site assembly for six-storey buildings is 30.2 m (99 ft.).

5.5.4 Residential mid-rise buildings will be considered up to maximum net density of 3.5 FSR. Residential buildings up to six storeys will be considered up to a maximum net density of 2.25 FSR.*

5.5.5 Lots or consolidations of lesser frontage remaining adjacent to multiple dwelling developments may be considered for lesser heights and commensurate densities compatible with adjacent multiple dwelling zoning.

5.5.6 Where new secured affordable housing is proposed, consider modest increases in height and density to assist with project viability.

5.5.7 Where properties do not front onto an open street, require consolidation with adjacent sites or alternate emergency vehicle access.

5.5.8 If necessary, require land dedication from lots on the north side of Vanness Avenue to provide a street width suitable for emergency access.

5.5.9 Floors above the fourth floor in mid-rise buildings greater than six storeys in height should not exceed a dimension of 24.4 m (80 ft.) in length or width (excluding open balconies) to minimize scale impacts.

5.5.10 Require land dedication or right-of-way, as appropriate, from lots on the south side of Vanness Street to provide an increased sidewalk width and street trees.

5.5.11 Provide a building break on the south side of Vanness Avenue to create mid-block pedestrian access (suggested locations indicated on figure 5.5).

5.5.12 Require acoustic mitigation from environmental noise (including road and SkyTrain noise) to ensure livability.

*Note: Some site assemblies may not be able to achieve the maximum FSR. Anticipated exclusion from gross floor area will be those typical of multi-family zones in Vancouver, except as otherwise noted in this Plan.
Figure 5.6: Sub-Areas V1 & V2 - Vanness Avenue

Legend

- Study Area Boundary
- Pedestrian Connection
- Maximum Mid-Rise Heights (in Feet)
- Sub-Areas V1 & V2
- Building Footprint
- Heights of Existing Buildings (in Storeys)
- Apartment: Up to 70 ft (approx. 6 storeys)
- Apartment: Up to 45 ft (approx. 4 storeys)
- SkyTrain Station
- Unlikely to Redevelop
- Park
8.2 Residential Buildings (applies to Sub-Areas V1&2, T1-T3, and J4)

These guidelines describe expected outcomes for properties that permit mid-rise buildings, apartment buildings and townhouses.

Public Realm
The general intent for the public space in front of multi-family residential buildings is to provide a generous and comfortable space for pedestrians, to create a landscaped street edge and to continue the street tree network. The width and type of treatment for sidewalks will vary depending on the adjacent building use and heights, and the character of the street.

8.2.1 Continue the sidewalk and street tree network on all streets.
8.2.2 Provide public realm amenities such as landscape, benches and bike racks.

Building Height and Form
The height of residential buildings varies depending on location, context and scale of the street. Taller residential buildings are generally located near the SkyTrain. Refer to Section 5 for specific building heights.

Where feasible and where lot dimensions allow (generally deeper than 39.6 m/130 ft.), apartment building sites may propose separate buildings at the lane. Lanes may be edged with smaller scale residential buildings such as townhouses or other similar buildings compatible with the scale and character of the lane.

8.2.3 Building volumes should be arranged to minimize shadowing on public spaces such as sidewalks and public plazas.
8.2.4 On larger sites containing mid-rise buildings taller than six-storeys, locate the taller buildings toward the SkyTrain Station and minimize shadow outside the Precinct area.
8.2.5 For buildings of five to six-storeys, provide a notable setback above four storeys to create a building scale that is visually compatible with adjacent buildings. Taller buildings should have a similar setback that takes into consideration the recommended podium height of adjacent buildings and the overall composition of the development. Setbacks should have a minimum depth of 1.8 m (6 ft.).
8.2.6 Reduce the scale of the buildings towards the lane to be compatible with adjacent development and minimize shadow and overlook to adjacent residential properties by stepping building form. Setbacks will increase with the height of the building.

8.2.7 Corner buildings should apply comparable setbacks on both street frontages that respond appropriately to each adjacent building. It is anticipated that the building massing will wrap the corner and transition down in height toward the lane.
8.2.8 Buildings at the lane may be up to two storeys. The form of laneway buildings should consider the narrow width of lanes and the adjacent buildings to ensure that overlook and shadow impacts are minimized.
8.2.9 Buildings fronting on Clive Street may be up to three storeys. In limited conditions a fourth storey may be considered depending on the adjacent building heights and the shadow impacts to the subject and neighbourng sites.

Figure 8.6: Public Realm and Setback at Residential Buildings

Figure 8.7: Laneway Building Adjacent to 6 Storey Building
8.2.10 In J4, buildings adjacent to properties zoned for single-family, without an intervening lane, should step down height to three-storeys within approximately 10.7 m (35 ft.) of the property line.

8.2.11 Shadow analyses should generally be prepared for 10 am, 12 pm and 2 pm at the vernal and autumnal equinoxes. Additional shadow analyses may be necessary to assess impacts on special sites, such as school or community gathering sites.

8.2.12 The number of storeys describes a height that anticipates floor to floor heights of approximately 3.1 m (10 ft.). Higher floor-to-floor heights may necessitate a reduction in the number of storeys. Mezzanine levels are considered storeys.

8.2.13 Building widths should reflect prevailing lot patterns, adjacent streets and building types. Smaller widths create a more incremental and interesting streetscape and are strongly encouraged. Building widths of approximately 36.6 m (120 ft.) may be supported for most four- and six-storey buildings. Building widths of approximately 45.7 m (150 ft.) may be considered along the north side of Vanness Avenue to assist with noise attenuation. For mid-rise buildings reduce apparent width of building bases wider than 36.6 m (120 ft.) by creating deep courtyards or building breaks.

8.2.14 Front facades should be articulated both vertically and horizontally to create an incremental building appearance that assists with compatibility with existing buildings in the area.

8.2.15 For buildings at the lane, the maximum frontage should be less than the principle building at the street and allow for pedestrian access to the lane. Individual lane frontages should not exceed 24.4 m (80 ft.), however smaller frontages may be required based on adjacent context. Pedestrian access to the lane between buildings should be a minimum of 2.4 m (8 ft.), but should increase significantly on wider sites.

8.2.16 Buildings designed with a row of dwelling units located on either side of a straight corridor ("double-loaded corridor") should not exceed approximately 19.8 m (65 ft.) in depth (excluding balconies) to ensure adequate provision of natural light and ventilation into the dwelling units.

8.2.17 Floors above the fourth floor in mid-rise buildings greater than six storeys in height should not exceed a dimension of 24.4 m (80 ft.) in length or width (excluding open balconies) to minimize scale impacts.
8.2.18 Building setbacks should accommodate the desired public realm condition, including required fire access. Yard setbacks are in addition to those setbacks required for the public realm.

8.2.19 Front yards setbacks should generally be provided as follows:
- Vanness Street (North): 4.6 m (15 ft.) minimum, to achieve a buffer from the SkyTrain guideway, and accommodate a landscape buffer;
- Vanness Street (South): 4.6 m (15 ft.) minimum; 3.7 m (12 ft.) minimum for buildings six-storeys or less in height;
- Clive Street: 3.7 m (12 ft.) to 4.6 m (15 ft.) minimum to be compatible with adjacent development;
- Payne Street, Joyce Street and Euclid Street: 3.7 m (12 ft.) minimum.

8.2.20 Side yard setbacks should vary depending on building height:
- Six-storey buildings: 3.7 m (12 ft.) minimum
- Six-storey buildings in J4: 3.1 m (10 ft.) minimum
- Buildings taller than six-storeys:
 - Four-storey base: 2.4 m (8 ft.) minimum
 - Six-storey base: 3.7 m (12 ft.) minimum
 - Upper storeys: 6.1 m (20 ft.) minimum

8.2.21 Rear yard setbacks should vary depending on adjacent context, and should generally be provided as follows:
- Two-storey buildings: 1.8 m (6 ft.) minimum
- Four-storey building or building base: 3.7 m (12 ft.) minimum
- Storeys above the fourth storey: 6.1 m (20 ft.) minimum

8.2.22 Side yard setbacks should be increased beyond the minimums to ensure that primary outlook for dwelling units meets standard Horizontal Angle of Daylight requirements.

8.2.23 Exterior side yards on flanking streets should be treated as front yards, with entries and patios, and should have yard setbacks similar to front yards.

8.2.24 The setback for lane buildings should allow for edge elements such as landscaping, vehicle maneuvering and safe pedestrian access.

8.2.25 Ground floor relationships may vary depending on the fronting street and dwelling unit style (i.e. apartment or townhouse). The first floor may be raised above grade (maximum 0.9 m/3 ft.) for both street and lane-facing buildings, in order to provide a comfortable relationship with passing pedestrians and vehicles. Where universal access is required, a flush entrance can be incorporated. A higher main floor may be considered to accommodate lock-off units.

8.2.26 Buildings at the lane are intended to have access and outlook directly on to the lane. The first floor level should be designed to facilitate interaction with the lane level.

8.2.27 Continuous parking structures should not be evident above the natural grade. Where protrusions are unavoidable due to grade, they must be incorporated into the landscape design and screened with on-site planting.

8.2.28 Ensure a consistent street orientation by having new development on corner sites establish a frontage character on both streets.

8.2.29 On sloping sites the establishment of floor elevations needs careful consideration to respond to site topography. Floor levels should step to follow natural grade. Dwelling units should not be located more than 0.9 m (3 ft.) below adjacent grade. On some sites, this may mean that the lowest floor is comprised of both dwelling units, and non-dwelling space such as storage.

8.2.30 Buildings with only one principle entrance should be oriented to reflect the predominant pattern on adjacent streets. Except, buildings adjacent to Joyce Street should orient to Joyce Street.
Building Design

Building architecture should be contemporary while considering the architectural history and context of the area and the emerging character of the neighbourhood.

8.2.35 Building design must mitigate environmental noise including road and SkyTrain noise. To ensure livability in close proximity to frequent SkyTrain pass-bys, the noise mitigation approach must consider the acoustic impact from each pass-by of the SkyTrain rather than a 24 hour weighted approach.

8.2.36 Individual buildings should express a unified architectural concept that is strong and consistent, and create interest by varying facade treatment at key points. Authentic and high quality materials and thoughtful design details are expected to be part of every project.

8.2.37 Developments that include more than one building should display a single, strong architectural concept, while introducing variety between buildings. While a consistent architectural language should be used, creativity is encouraged to distinguish buildings.

Building entrances should be clearly identifiable and should be appropriately scaled to the building and street context.

To provide visual interest and variation, buildings could include separate units with individual entrances facing the street, including the flanking street on corner sites.

Where developments include buildings at the lane, access to these buildings must be distinguished and identifiable from the street. This will necessitate a wider side yard or a mid-lot courtyard.

Lane buildings have a role to activate and animate the lane. Entry doors should have direct access to the lane, though for firefighter access, a door or pathway from the street side is normally required as well.

Buildings with townhouses at grade should distinguish the townhouses architecturally from the primary building.

Variety is encouraged among building developments to avoid repetition and to create an interesting streetscape.

Taller buildings should have a hierarchy of base, middle and top elements. The proportion of these elements will vary depending on the building type, but a clear expression of base and entry is expected.

Enclosed balconies can assist with noise attenuation on busy streets and transit routes. If used, they should be designed to be distinct, but integrated, within the overall architecture of the building. They are not eligible for floor area exclusion, except for those directly facing the SkyTrain guideway and identified as a noise mitigation measure in a report prepared by a professional trained in acoustics, in which case limited exclusion may be considered.
8.3 General Guidelines (Apply to all Sub-Areas)

Parking and Lane Interface

8.3.1 Parking should be accessed from the lane, regardless of site topography. For apartment buildings, it should be underground and not visible from the street. The access point should be in a location that minimizes disruption to the lane environment.

8.3.2 Create active edges on lanes that accommodate servicing needs and add to the character of the lane. For mixed-use developments, consider carrying through the function of the ground floor activity to the lane.

8.3.3 Provide landscaping to enhance the lane environment and screen service uses such as parkade entries.

8.3.4 Safely accommodate mid-block connections at lanes with setbacks and other visual cues.

Landscape and Private Outdoor Space

8.3.5 The overall landscape approach should reinforce the neighbourhood character by providing a variety of plant materials and treatments, some of which will achieve a substantial size at maturity.

8.3.6 Landscape screening of appropriate size and species should be provided to sites north of the SkyTrain guideway to create a visual buffer to movement, lights and overlook from the trains.

8.3.7 Mature trees and prominent landscape elements should be retained where feasible.

8.3.8 New development should enhance the landscape image of the lane.

8.3.9 Provide locations for urban agriculture, whether at or above grade.

8.3.10 Dwellings should have private outdoor space in the form of a balcony or patio. Shared rooftop gardens can also be provided to increase opportunities for outdoor enjoyment, while considering the privacy of neighbours in their design.

Courtyards

8.2.42 For projects that include laneway buildings, the space between the primary fronting buildings and the lane buildings (the courtyard) needs to be large enough to ensure the livability of all units. A minimum 7.3 m (24 ft) depth is recommended.

8.2.43 On sites with more than one building facing the street, the separation between these buildings should be at least 7.3 m (24 ft) to allow for a neighbourly interface with the adjacent dwellings.

8.2.44 While different site orientations will determine solar access to the courtyard, massing explorations should seek to achieve a maximum amount of sunlight in the courtyard. Variations in height, building setbacks and breezeways can be explored.

8.2.45 Courtyards that are incorporated into an individual building form (i.e. alphabet-type buildings) should have a minimum width of 7.3 m (24 ft) at lower levels and 9.1 m (30 ft) at the upper two levels.

8.2.46 Dwellings facing courtyards should be carefully designed to mitigate privacy concerns and overlook.

Pedestrian Connections

8.2.47 Mid-block pedestrian connections should have a minimum width of 7.3 m (24 ft) between buildings, and a 2.4 m (8 ft) wide barrier-free path.

8.2.48 Buildings located adjacent to mid-block pedestrian connections should provide a deeper front setback at the passage to improve their visibility and atmosphere — approximately 2.4 m (8 ft) by 3.7 m (12 ft).

8.2.49 Ground floors adjacent to mid-block pedestrian connections should have an active edge with entrances and windows facing the pedestrian path, whether the interface is residential or retail in nature.

Example of residential entrances off a courtyard space

Example of parking access off a lane with landscaping.
1636 Clark Drive